Von Neumann's ergodic theorem and Fejer sums for signed measures on the circle
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1313-1321.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Fejer sums for measures on the circle and the norms of the deviations from the limit in von Neumann's ergodic theorem are calculated, in fact, using the same formulas (by integrating the Fejer kernels) — and so, this ergodic theorem is a statement about the asymptotics of the Fejer sums at zero for the spectral measure of the corresponding dynamical system. It made it possible, having considered the integral Holder condition for signed measures, to prove a theorem that unifies both following well-known results: classical S.N. Bernstein's theorem on polynomial deviations of the Fejer sums for Holder functions — and theorem about polynomial rates of convergence in von Neumann's ergodic theorem.
Keywords: deviations of Fejer sums, rates of convergence in von Neumann's ergodic theorem, integral Holder condition.
@article{SEMR_2020_17_a139,
     author = {A. G. Kachurovskii and M. N. Lapshtaev and A. J. Khakimbaev},
     title = {Von {Neumann's} ergodic theorem and {Fejer} sums for signed measures on the circle},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1313--1321},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a139/}
}
TY  - JOUR
AU  - A. G. Kachurovskii
AU  - M. N. Lapshtaev
AU  - A. J. Khakimbaev
TI  - Von Neumann's ergodic theorem and Fejer sums for signed measures on the circle
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 1313
EP  - 1321
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a139/
LA  - ru
ID  - SEMR_2020_17_a139
ER  - 
%0 Journal Article
%A A. G. Kachurovskii
%A M. N. Lapshtaev
%A A. J. Khakimbaev
%T Von Neumann's ergodic theorem and Fejer sums for signed measures on the circle
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 1313-1321
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a139/
%G ru
%F SEMR_2020_17_a139
A. G. Kachurovskii; M. N. Lapshtaev; A. J. Khakimbaev. Von Neumann's ergodic theorem and Fejer sums for signed measures on the circle. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1313-1321. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a139/

[1] N.K. Bari, Trigonometrical series, Fizmatgiz, M., 1961 (in Russian) | MR

[2] I.P. Natanson, Constructive theory of functions, GITTL, M.–L., 1949 (in Russian) | MR

[3] S. Nikol'ski, “Sur l'allure asymptotique du reste dans l'approximation au moyen des sommes de Fejer des fonctions verifiant la condition de Lipschitz”, Izv. Akad. Nauk SSSR Ser. Mat., 4:6 (1940), 501–508 | MR

[4] A. Zygmund, Trigonometric Series, v. I, 2nd ed., Cambridge University Press, New York, 1959 | MR | Zbl

[5] A.G. Kachurovskii, I.V. Podvigin, “Fejer sums for periodic measures and the von Neumann ergodic theorem”, Dokl. Math., 98:1 (2018), 344–347 | DOI | MR | Zbl

[6] I.P Kornfeld, Ya.G. Sinai, S.V. Fomin, Ergodic theory, Nauka, M., 1980 (in Russian) | MR | Zbl

[7] I.A. Ibragimov, Yu.V. Linnik, Independent and stationary sequences of random variables, Nauka, M., 1965 (in Russian) | MR

[8] A.G. Kachurovskii, “Rates of convergence in ergodic theorems”, Russian Math. Surveys, 51:4 (1996), 653–703 | DOI | MR | Zbl

[9] A.G. Kachurovskii, V.V. Sedalishchev, “On the constants in the estimates for the rate of convergence in von Neumann's ergodic theorem”, Math. Notes, 87:5–6 (2010), 720–727 | DOI | MR | Zbl

[10] A.G. Kachurovskii, V.V. Sedalishchev, “Constants of estimates for the rate of convergence in the von Neumann and Birkhoff ergodic theorems”, Sb. Math., 202:8 (2011), 1105–1125 | DOI | MR | Zbl

[11] A.N. Kolmogorov, S.V. Fomin, Elements of the theory of functions and functional analysis, Nauka, M., 1976 (in Russian) | MR