Factorization of special harmonic polynomials of three variables
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1299-1312

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider homogeneous harmonic polynomials of real variables $x,y,z$ that are eigenfunctions of the rotations about the axis $z$. They have the form $(x\pm yi)^{n}p(x,y,z)$, where $p$ is a rotation invariant polynomial. Let $\mathfrak{R}_{m}$ be the family of the homogeneous rotation invariant polynomials $p$ of degree $m$ such that $p$ is reducible over the rationals and $(x+yi)^{n}p$ is harmonic for some $n\in\mathbb{N}$. We describe $\mathfrak{R}_{m}$ for $m\leq5$ and prove that $\mathfrak{R}_{6}$ and $\mathfrak{R}_{7}$ are finite.
Keywords: Legendre functions, harmonic polynomials, factorization.
@article{SEMR_2020_17_a138,
     author = {V. M. Gichev},
     title = {Factorization of special harmonic polynomials of three variables},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1299--1312},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a138/}
}
TY  - JOUR
AU  - V. M. Gichev
TI  - Factorization of special harmonic polynomials of three variables
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 1299
EP  - 1312
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a138/
LA  - en
ID  - SEMR_2020_17_a138
ER  - 
%0 Journal Article
%A V. M. Gichev
%T Factorization of special harmonic polynomials of three variables
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 1299-1312
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a138/
%G en
%F SEMR_2020_17_a138
V. M. Gichev. Factorization of special harmonic polynomials of three variables. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1299-1312. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a138/