Factorization of special harmonic polynomials of three variables
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1299-1312.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider homogeneous harmonic polynomials of real variables $x,y,z$ that are eigenfunctions of the rotations about the axis $z$. They have the form $(x\pm yi)^{n}p(x,y,z)$, where $p$ is a rotation invariant polynomial. Let $\mathfrak{R}_{m}$ be the family of the homogeneous rotation invariant polynomials $p$ of degree $m$ such that $p$ is reducible over the rationals and $(x+yi)^{n}p$ is harmonic for some $n\in\mathbb{N}$. We describe $\mathfrak{R}_{m}$ for $m\leq5$ and prove that $\mathfrak{R}_{6}$ and $\mathfrak{R}_{7}$ are finite.
Keywords: Legendre functions, harmonic polynomials, factorization.
@article{SEMR_2020_17_a138,
     author = {V. M. Gichev},
     title = {Factorization of special harmonic polynomials of three variables},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1299--1312},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a138/}
}
TY  - JOUR
AU  - V. M. Gichev
TI  - Factorization of special harmonic polynomials of three variables
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 1299
EP  - 1312
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a138/
LA  - en
ID  - SEMR_2020_17_a138
ER  - 
%0 Journal Article
%A V. M. Gichev
%T Factorization of special harmonic polynomials of three variables
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 1299-1312
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a138/
%G en
%F SEMR_2020_17_a138
V. M. Gichev. Factorization of special harmonic polynomials of three variables. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1299-1312. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a138/

[1] M.L. Agranovsky, “On a problem of injectivity for the Radon transform on a paraboloid”, Contemporary Math., 251 (1999), 1–14 | MR | Zbl

[2] M. Agranovsky, Y. Krasnov, “Quadratic divisors of harmonic polynomials in ${\mathbb R}^{n}$”, J. Anal. Math., 82 (2000), 379–395 | DOI | MR | Zbl

[3] D.H. Armitage, “Cones on which entire harmonic functions can vanish”, Proc. R. Ir. Acad., Sect. A, 92:1, Apr. (1992), 107–110 | MR | Zbl

[4] J.B. Holt, “The irreducibility of Legendre's polynomials”, Lond. M. S. Proc. (2), 11 (1912), 351–356 | MR | Zbl

[5] J.B. Holt, “On the irreducibility of Legendre's polynomials”, Lond. M. S. Proc. (2), 12 (1912), 126–132 | MR | Zbl

[6] J.B. Holt, “The irreducibility of Legendre's polynomials (Third Paper)”, Proc. London Math. Soc., Records of Proceedings at Meetings (Session November 1912–June 1913), 1913, xxxi–xxxii | MR

[7] H. Ille, Zur Irreduzibilitat der Kugelfunctionen, Jbuch. der Dissertationen, Berlin, 1924

[8] A. Logunov, E. Malinnikova, “On ratios of harmonic functions”, Adv. Math., 274 (2015), 241–262 | DOI | MR | Zbl

[9] A. Logunov, E. Malinnikova, “Ratios of harmonic functions with the same zero set”, Geom. Funct. Anal., 26:3 (2016), 909–925 | DOI | MR | Zbl

[10] D. Mangoubi, A. Weller Weiser, “Harmonic functions vanishing on a cone”, Isr. J. Math., 230:2 (2019), 563–581 | DOI | MR | Zbl

[11] R.F. McCoart, “Irreducibility of certain classes of Legendre polynomials”, Duke Math. J., 28:2 (1961), 239–246 | DOI | MR | Zbl

[12] I.G. Melnikov, “On irreducibility of Legendre polynomials”, Ukr. Mat. Zh., 8 (1956), 26–33 | MR | Zbl

[13] L.J. Mordell, Diophantine equations, Pure and Applied Mathematics, 30, Academic Press, London–New York, 1969 | MR | Zbl

[14] T.J. Stieltjes, “Letter No. 275 of Oct. 2, 1890”, Correspondence de Hermite et Stieltjes, v. 2, Gauthier-Villars, Paris, 1905 | MR | Zbl

[15] J.H. Wahab, “New cases of irreducibility for Legendre polynomials”, Duke Math. J., 19 (1952), 165–176 | DOI | MR | Zbl

[16] J.H. Wahab, “New cases of irreducibility for Legendre polynomials. II”, Duke Math. J., 27 (1960), 481–482 | DOI | MR | Zbl

[17] D.N. Delone, D.K. Faddeev, The theory of irrationalities of the third degree, Translations of Mathematical Monographs, 10, American Math. Soc., Providence, 1964 | MR | Zbl