The Wiener–Hopf equation with probability kernel of oscillating type
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1288-1298.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the existence of a solution to the inhomogeneous Wiener–Hopf equation whose kernel is a nonarithmetic probability distribution generating an oscillating random walk. Asymptotic properties of the solution are established depending on the properties of the inhomogeneous term of the equation.
Keywords: integral equation, inhomogeneous equation, Wiener-Hopf equation, asymptotic behavior, nonarithmetic distribution, oscillating type.
@article{SEMR_2020_17_a137,
     author = {M. S. Sgibnev},
     title = {The {Wiener{\textendash}Hopf} equation with probability kernel of oscillating type},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1288--1298},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a137/}
}
TY  - JOUR
AU  - M. S. Sgibnev
TI  - The Wiener–Hopf equation with probability kernel of oscillating type
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 1288
EP  - 1298
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a137/
LA  - en
ID  - SEMR_2020_17_a137
ER  - 
%0 Journal Article
%A M. S. Sgibnev
%T The Wiener–Hopf equation with probability kernel of oscillating type
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 1288-1298
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a137/
%G en
%F SEMR_2020_17_a137
M. S. Sgibnev. The Wiener–Hopf equation with probability kernel of oscillating type. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1288-1298. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a137/

[1] W. Feller, An Introduction to Probability Theory and Its Applications, v. II, John Wiley and Sons, Inc., New York etc, 1966 | MR | Zbl

[2] M.S. Sgibnev, “The discrete Wiener-Hopf equation with probability kernel of oscillating type”, Sib. Math. J., 60:3 (2019), 516–525 | DOI | MR | Zbl

[3] V.I. Dmitriev, “The Wiener-Hopf equation”, Mathematical Encyclopedia, v. 1, Sovetskaya Entsiklopediya, M., 1977, 697–698

[4] F.D Gakhov, Yu.I. Cherskiĭ, Equations of convolution type, Nauka, M., 1978 | MR | Zbl

[5] B.A. Rogozin, “Asymptotic analysis of renewal function”, Theory Probab. Appl., 21:4 (1976), 669–686 | DOI | MR | Zbl

[6] M.S. Sgibnev, “An asymptotic expansion for the distribution of the supremum of a random walk”, Stud. Math., 140:1 (2000), 41–55 | DOI | MR | Zbl

[7] I.M. Gelfand, D.A. Raikov, G.E. Shilov, Commutative Normed Rings, Chelsea, New York, 1964 | MR

[8] E. Hille, R.S. Phillips, Functional Analysis and Semi-Groups, Amer. Math. Soc. Colloq. Publ., 31, 1974 | MR | Zbl

[9] G. Alsmeyer, Erneuerungstheorie. Analyse stochastischer Regenerationsschemata, B.G. Teubner, Stuttgart, 1991 | MR | Zbl

[10] C. Stone, “On absolutely continuous components and renewal theory”, Ann. Math. Stat., 37 (1966), 271–275 | DOI | MR | Zbl

[11] M.S. Sgibnev, “Renewal theorem in the case of an infinite variance”, Sib. Math. J., 22:5 (1982), 787–796 | DOI | MR | Zbl

[12] M.S. Sgibnev, “Homogeneous Wiener-Hopf equation”, Sb. Math., 198:9 (2007), 1341–1350 | DOI | MR | Zbl

[13] R.A. Doney, “Moments of ladder heights in random walks”, J. Appl. Probab., 17:1 (1980), 248–252 | DOI | MR | Zbl

[14] M.S. Sgibnev, “An asymptotic property of the solution to the homogeneous generalized Wiener-Hopf equation”, Sib. Math. J., 51:6 (2010), 1430–1434 | DOI | MR | Zbl

[15] E. Lukacs, Characteristic Functions, Griffin, London, 1970 | MR | Zbl

[16] M.S. Sgibnev, “Wiener-Hopf equation whose kernel is a probability distribution”, Differ. Equ., 53:9 (2017), 1209–1231 | DOI | MR | Zbl

[17] M.S. Sgibnev, “On the inhomogeneous conservative Wiener-Hopf equation”, Sib. Math. J., 58:6 (2017), 1090–1103 | DOI | MR | Zbl