Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2020_17_a137, author = {M. S. Sgibnev}, title = {The {Wiener{\textendash}Hopf} equation with probability kernel of oscillating type}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1288--1298}, publisher = {mathdoc}, volume = {17}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a137/} }
M. S. Sgibnev. The Wiener–Hopf equation with probability kernel of oscillating type. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1288-1298. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a137/
[1] W. Feller, An Introduction to Probability Theory and Its Applications, v. II, John Wiley and Sons, Inc., New York etc, 1966 | MR | Zbl
[2] M.S. Sgibnev, “The discrete Wiener-Hopf equation with probability kernel of oscillating type”, Sib. Math. J., 60:3 (2019), 516–525 | DOI | MR | Zbl
[3] V.I. Dmitriev, “The Wiener-Hopf equation”, Mathematical Encyclopedia, v. 1, Sovetskaya Entsiklopediya, M., 1977, 697–698
[4] F.D Gakhov, Yu.I. Cherskiĭ, Equations of convolution type, Nauka, M., 1978 | MR | Zbl
[5] B.A. Rogozin, “Asymptotic analysis of renewal function”, Theory Probab. Appl., 21:4 (1976), 669–686 | DOI | MR | Zbl
[6] M.S. Sgibnev, “An asymptotic expansion for the distribution of the supremum of a random walk”, Stud. Math., 140:1 (2000), 41–55 | DOI | MR | Zbl
[7] I.M. Gelfand, D.A. Raikov, G.E. Shilov, Commutative Normed Rings, Chelsea, New York, 1964 | MR
[8] E. Hille, R.S. Phillips, Functional Analysis and Semi-Groups, Amer. Math. Soc. Colloq. Publ., 31, 1974 | MR | Zbl
[9] G. Alsmeyer, Erneuerungstheorie. Analyse stochastischer Regenerationsschemata, B.G. Teubner, Stuttgart, 1991 | MR | Zbl
[10] C. Stone, “On absolutely continuous components and renewal theory”, Ann. Math. Stat., 37 (1966), 271–275 | DOI | MR | Zbl
[11] M.S. Sgibnev, “Renewal theorem in the case of an infinite variance”, Sib. Math. J., 22:5 (1982), 787–796 | DOI | MR | Zbl
[12] M.S. Sgibnev, “Homogeneous Wiener-Hopf equation”, Sb. Math., 198:9 (2007), 1341–1350 | DOI | MR | Zbl
[13] R.A. Doney, “Moments of ladder heights in random walks”, J. Appl. Probab., 17:1 (1980), 248–252 | DOI | MR | Zbl
[14] M.S. Sgibnev, “An asymptotic property of the solution to the homogeneous generalized Wiener-Hopf equation”, Sib. Math. J., 51:6 (2010), 1430–1434 | DOI | MR | Zbl
[15] E. Lukacs, Characteristic Functions, Griffin, London, 1970 | MR | Zbl
[16] M.S. Sgibnev, “Wiener-Hopf equation whose kernel is a probability distribution”, Differ. Equ., 53:9 (2017), 1209–1231 | DOI | MR | Zbl
[17] M.S. Sgibnev, “On the inhomogeneous conservative Wiener-Hopf equation”, Sib. Math. J., 58:6 (2017), 1090–1103 | DOI | MR | Zbl