Truncated Wiener-Hopf equation and matrix function factorization
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1217-1226

Voir la notice de l'article provenant de la source Math-Net.Ru

We will study relationship between a convolution equation of second kind on a finite interval and the Riemann —Hilbert boundary value problems. In addition, as a consequence of the results obtained in the work, Theorem 2 of the following article will be supplemented [3].
Keywords: Riemann boundary value problems, factorization of matrix functions, stability, truncated Wiener —Hopf equation.
Mots-clés : partial indices, unique, convolution equation
@article{SEMR_2020_17_a136,
     author = {A. F. Voronin},
     title = {Truncated {Wiener-Hopf} equation and matrix function factorization},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1217--1226},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a136/}
}
TY  - JOUR
AU  - A. F. Voronin
TI  - Truncated Wiener-Hopf equation and matrix function factorization
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 1217
EP  - 1226
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a136/
LA  - en
ID  - SEMR_2020_17_a136
ER  - 
%0 Journal Article
%A A. F. Voronin
%T Truncated Wiener-Hopf equation and matrix function factorization
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 1217-1226
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a136/
%G en
%F SEMR_2020_17_a136
A. F. Voronin. Truncated Wiener-Hopf equation and matrix function factorization. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1217-1226. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a136/