Truncated Wiener-Hopf equation and matrix function factorization
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1217-1226.

Voir la notice de l'article provenant de la source Math-Net.Ru

We will study relationship between a convolution equation of second kind on a finite interval and the Riemann —Hilbert boundary value problems. In addition, as a consequence of the results obtained in the work, Theorem 2 of the following article will be supplemented [3].
Keywords: Riemann boundary value problems, factorization of matrix functions, stability, truncated Wiener —Hopf equation.
Mots-clés : partial indices, unique, convolution equation
@article{SEMR_2020_17_a136,
     author = {A. F. Voronin},
     title = {Truncated {Wiener-Hopf} equation and matrix function factorization},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1217--1226},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a136/}
}
TY  - JOUR
AU  - A. F. Voronin
TI  - Truncated Wiener-Hopf equation and matrix function factorization
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 1217
EP  - 1226
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a136/
LA  - en
ID  - SEMR_2020_17_a136
ER  - 
%0 Journal Article
%A A. F. Voronin
%T Truncated Wiener-Hopf equation and matrix function factorization
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 1217-1226
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a136/
%G en
%F SEMR_2020_17_a136
A. F. Voronin. Truncated Wiener-Hopf equation and matrix function factorization. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1217-1226. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a136/

[1] M.G. Krein, “Integral equations on the half-line with a kernel depending on the difference of the arguments”, Transl., Ser. 2, Am. Math. Soc., 22 (1962), 163–288 | MR | Zbl

[2] F.D. Gahov, Yu.I. Cherskii, Equations of convolution type, Nauka, M., 1978 | MR | Zbl

[3] I. Feldman, I. Gohberg, N. Krupnik, “Convolution equations on finite intervals and factorization of matrix function”, Integral Equations Oper. Theory, 36:2 (2000), 201–211 | DOI | MR | Zbl

[4] A.F. Voronin, “A complete generalization of the Wiener-Hopf method to convolution integral equations with integrable kernel on a finite interval”, Differ. Equ., 40:9 (2004), 1259–1267 | DOI | MR | Zbl

[5] A.F. Voronin, “Systems of convolution equations of the first and second kind on a finite interval and factorization of matrix-functions”, Sib. Math. J., 53:5 (2012), 781–791 | DOI | MR | Zbl

[6] B.V. Pal'cev, “Generalization of the Wiener-Hopf method for convolution equations of a finite interval with symbols having power asymptotic behavior at infinity”, Mat. Sb., 113:3 (1980), 355–399 | MR

[7] N.I. Muskhelishvili, Singular integral equations, Wolters-Noordhoff Pabl., Groningen, 1972 | MR

[8] I.Ts. Gokhberg, M.G. Krein, “Systems of integral equations on a half line with kernels depending on the difference of arguments”, Am. Math. Soc., Transl., II. Ser., 14 (1960), 217–287 | DOI | MR | Zbl

[9] I. Gohberg, M.A. Kaashoek, I.M. Spitkovsky, “An overview of matrix factorization theory and operator applications”, Factorization and integrable systems (Faro, 2000), Oper. Theory Adv. Appl., 141, Birkhauser, Basel, 2003, 1–102 | MR | Zbl

[10] A.F. Voronin, “A method for determining the partial indices of symmetric matrix functions”, Sib. Math. J., 52:1 (2011), 41–53 | DOI | MR | Zbl

[11] I.M. Spitkovsky, A.F. Voronin, “A note on the factorization of some structured matrix functions”, Integral Equations Oper. Theory, 90:3 (2018), 39 | DOI | MR | Zbl

[12] A.F. Voronin, “Investigation of a convolution integral equation of the second kind on a finite interval with a periodic kernel”, J. Appl. Ind. Math., 4:2 (2010), 282–289 | DOI | MR

[13] A.F. Voronin, “Investigation of the ${\mathbb R}$-linear problem and the truncated Wiener –Hopf equation”, Siberian Advances in Mathematics, 30:2 (2020), 143–151 | DOI