Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2020_17_a136, author = {A. F. Voronin}, title = {Truncated {Wiener-Hopf} equation and matrix function factorization}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1217--1226}, publisher = {mathdoc}, volume = {17}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a136/} }
A. F. Voronin. Truncated Wiener-Hopf equation and matrix function factorization. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1217-1226. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a136/
[1] M.G. Krein, “Integral equations on the half-line with a kernel depending on the difference of the arguments”, Transl., Ser. 2, Am. Math. Soc., 22 (1962), 163–288 | MR | Zbl
[2] F.D. Gahov, Yu.I. Cherskii, Equations of convolution type, Nauka, M., 1978 | MR | Zbl
[3] I. Feldman, I. Gohberg, N. Krupnik, “Convolution equations on finite intervals and factorization of matrix function”, Integral Equations Oper. Theory, 36:2 (2000), 201–211 | DOI | MR | Zbl
[4] A.F. Voronin, “A complete generalization of the Wiener-Hopf method to convolution integral equations with integrable kernel on a finite interval”, Differ. Equ., 40:9 (2004), 1259–1267 | DOI | MR | Zbl
[5] A.F. Voronin, “Systems of convolution equations of the first and second kind on a finite interval and factorization of matrix-functions”, Sib. Math. J., 53:5 (2012), 781–791 | DOI | MR | Zbl
[6] B.V. Pal'cev, “Generalization of the Wiener-Hopf method for convolution equations of a finite interval with symbols having power asymptotic behavior at infinity”, Mat. Sb., 113:3 (1980), 355–399 | MR
[7] N.I. Muskhelishvili, Singular integral equations, Wolters-Noordhoff Pabl., Groningen, 1972 | MR
[8] I.Ts. Gokhberg, M.G. Krein, “Systems of integral equations on a half line with kernels depending on the difference of arguments”, Am. Math. Soc., Transl., II. Ser., 14 (1960), 217–287 | DOI | MR | Zbl
[9] I. Gohberg, M.A. Kaashoek, I.M. Spitkovsky, “An overview of matrix factorization theory and operator applications”, Factorization and integrable systems (Faro, 2000), Oper. Theory Adv. Appl., 141, Birkhauser, Basel, 2003, 1–102 | MR | Zbl
[10] A.F. Voronin, “A method for determining the partial indices of symmetric matrix functions”, Sib. Math. J., 52:1 (2011), 41–53 | DOI | MR | Zbl
[11] I.M. Spitkovsky, A.F. Voronin, “A note on the factorization of some structured matrix functions”, Integral Equations Oper. Theory, 90:3 (2018), 39 | DOI | MR | Zbl
[12] A.F. Voronin, “Investigation of a convolution integral equation of the second kind on a finite interval with a periodic kernel”, J. Appl. Ind. Math., 4:2 (2010), 282–289 | DOI | MR
[13] A.F. Voronin, “Investigation of the ${\mathbb R}$-linear problem and the truncated Wiener –Hopf equation”, Siberian Advances in Mathematics, 30:2 (2020), 143–151 | DOI