Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2020_17_a133, author = {N. V. Abrosimov and G. A. Baigonakova and L. A. Grunwald and I. A. Mednykh}, title = {Counting rooted spanning forests in cobordism of two circulant graphs}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {814--823}, publisher = {mathdoc}, volume = {17}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a133/} }
TY - JOUR AU - N. V. Abrosimov AU - G. A. Baigonakova AU - L. A. Grunwald AU - I. A. Mednykh TI - Counting rooted spanning forests in cobordism of two circulant graphs JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2020 SP - 814 EP - 823 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a133/ LA - en ID - SEMR_2020_17_a133 ER -
%0 Journal Article %A N. V. Abrosimov %A G. A. Baigonakova %A L. A. Grunwald %A I. A. Mednykh %T Counting rooted spanning forests in cobordism of two circulant graphs %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2020 %P 814-823 %V 17 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a133/ %G en %F SEMR_2020_17_a133
N. V. Abrosimov; G. A. Baigonakova; L. A. Grunwald; I. A. Mednykh. Counting rooted spanning forests in cobordism of two circulant graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 814-823. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a133/
[1] N.V. Abrosimov, G.A. Baigonakova, I.A. Mednykh, “Counting spanning trees in cobordism of two circulant graphs”, Sib. Electron. Mat. Izv., 15 (2018), 1145–1157 | MR | Zbl
[2] M. Aigner, G.M. Ziegler, Proofs from THE BOOK, Springer-Verlag, Berlin, 1998 | MR | Zbl
[3] M. Boben, T. Pisanski, A. $\check{\textrm{Z}}$itnik, “$I$-graphs and the corresponding configurations”, J. Comb. Des., 13:6 (2005), 406–424 | DOI | MR | Zbl
[4] F.T. Boesch, H. Prodinger, “Spanning tree formulas and Chebyshev polynomials”, Graphs Comb., 2:1 (1986), 191–200 | DOI | MR | Zbl
[5] P.J. Davis, Circulant matrices, AMS Chelsea Publishing, New York, 1994 | MR | Zbl
[6] G. Everest, T. Ward, Heights of polynomials and entropy in algebraic dynamics, Springer, London, 1999 | MR | Zbl
[7] L.A. Grunwald, I.A. Mednykh, The number of rooted forests in circulant graphs, 2019, arXiv: 1907.02635 [math.CO] | Zbl
[8] F. Harary, J.P. Hayes, H.-J. Wu, “A survey of the theory of hypercube graphs”, Comput. Math. Appl., 15:4 (1988), 277–289 | DOI | MR | Zbl
[9] N. Hartsfield, G. Ringel, Pearls in graph theory. A comprehensive introduction, Dover Publications, Mineola, 2003 | MR | Zbl
[10] B. Horvat, T. Pisanski, A. $\check{\textrm{Z}}$itnik, “Isomorphism checking of $I$-graphs”, Graphs Comb., 28:6 (2012), 823–830 | DOI | MR | Zbl
[11] O. Knill, Counting rooted forests in a network, 2013, arXiv: 1307.3810 [math.SP]
[12] Y.S. Kwon, A.D. Mednykh, I.A. Mednykh, “On Jacobian group and complexity of the generalized Petersen graph $GP(n, k)$ through Chebyshev polynomials”, Linear Algebra Appl., 529 (2017), 355–373 | DOI | MR | Zbl
[13] L. Takács, “On the number of distinct forests”, SIAM J. Disc. Math., 3:4 (1990), 574–581 | DOI | MR | Zbl
[14] J.C. Mason, D.C. Handscomb, Chebyshev Polynomials, CRC Press, Boca Raton, 2003 | MR | Zbl
[15] A.D. Mednykh, I.A. Mednykh, “Asymptotics and arithmetical properties of complexity for circulant graphs”, Dokl. Math., 97:2 (2018), 147–151 | DOI | MR | Zbl
[16] I.A. Mednykh, “On Jacobian group and complexity of the $I$-graph $I(n,k,l)$ through Chebyshev polynomials”, Arc Math. Contemp., 15:2 (2018), 467–485 | DOI | MR | Zbl
[17] S.D. Nikolopoulos, C. Papadopoulos, “The number of spanning trees in $K_n$-complements of quasi-threshold graphs”, Graph Comb., 20:3 (2004), 383–397 | DOI | MR | Zbl
[18] M. Petkovs$\check{\textrm{e}}$k, H. Zakrajs$\check{\textrm{e}}$k, “Enumeration of $I$-graphs: Burnside does it again”, Ars Math. Contemp., 2:2 (2009), 241–262 | DOI | MR | Zbl
[19] R. Shrock, F.Y. Wu, “Spanning trees on graphs and lattices in $d$-dimensions”, J. Phys. A, Math. Gen., 33:21 (2000), 3881–3902 | DOI | MR | Zbl
[20] W. Sun, S. Wang, J. Zhang, “Counting spanning trees in prism and anti-prism graphs”, J. Appl. Anal. Comput., 6:1 (2016), 65–75 | MR | Zbl
[21] C.J. Liu, Y. Chow, “Enumeration of forests in a graph”, Proc. Amer. Math. Soc., 83:3 (1981), 659–662 | DOI | MR | Zbl
[22] Chen Xiebin, Qiuying Lin, Fuji Zhang, “The number of spanning trees in odd valent circulant graphs”, Discrete Math., 282:1-3 (2004), 69–79 | DOI | MR | Zbl
[23] Yuanping Zhang, Yong Xuerong, M.J. Golin, “Chebyshev polynomials and spanning tree formulas for circulant and related graphs”, Discrete Math., 298:1-3 (2005), 334–364 | DOI | MR | Zbl
[24] Yuanping Zhang, Yong Xuerong, M.J. Golin, “The number of spanning trees in circulant graphs”, Discrete. Math., 223:1-3 (2000), 337–350 | DOI | MR | Zbl