Lower bound of the supremum of ergodic averages for ${\mathbb{Z}^d}$ and ${\mathbb{R}^d}$-actions
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 626-636.

Voir la notice de l'article provenant de la source Math-Net.Ru

For ergodic ${\mathbb{Z}^d}$ and ${\mathbb{R}^d}$-actions, we obtain a pointwise lower bound for the supremum of ergodic averages. For ${\mathbb{Z}^d}$-actions in the case when the supremum is taken over multi-indices exceeding $\vec{n}$ located in a certain sector, the resulting inequality is not improvable over $\vec{n}$ in the class of all averaging integrable functions.
Keywords: rates of convergence in ergodic theorems, individual ergodic theorem, Wiener–Wintner ergodic theorem.
@article{SEMR_2020_17_a130,
     author = {I. V. Podvigin},
     title = {Lower bound of the supremum of ergodic averages for ${\mathbb{Z}^d}$ and ${\mathbb{R}^d}$-actions},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {626--636},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a130/}
}
TY  - JOUR
AU  - I. V. Podvigin
TI  - Lower bound of the supremum of ergodic averages for ${\mathbb{Z}^d}$ and ${\mathbb{R}^d}$-actions
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 626
EP  - 636
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a130/
LA  - en
ID  - SEMR_2020_17_a130
ER  - 
%0 Journal Article
%A I. V. Podvigin
%T Lower bound of the supremum of ergodic averages for ${\mathbb{Z}^d}$ and ${\mathbb{R}^d}$-actions
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 626-636
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a130/
%G en
%F SEMR_2020_17_a130
I. V. Podvigin. Lower bound of the supremum of ergodic averages for ${\mathbb{Z}^d}$ and ${\mathbb{R}^d}$-actions. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 626-636. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a130/

[1] Math. Notes, 106:1 (2019), 52–62 | DOI | DOI | MR | MR | Zbl

[2] Math. Notes, 94:4 (2013), 524–531 | DOI | DOI | MR | MR | Zbl

[3] Siberian Adv. Math., 26:2 (2016), 139–151 | DOI | MR | MR | Zbl

[4] Springer, New York, 1982 | MR | MR | Zbl | Zbl

[5] Y. Coudene, Ergodic theory and dynamical systems, Springer-Verlag, London, 2016 | MR | Zbl

[6] R. Kuang, X. D. Ye, “The return times set and mixing for measure preserving transformations”, Discrete Contin. Dyn. Syst., 18:4 (2007), 817–827 | DOI | MR | Zbl

[7] V. I. Bogachev, Measure theory, v. I, Springer-Verlag, Berlin, 2007 | MR | Zbl

[8] C.R.E. Raja, “On the existence of ergodic automorphisms in ergodic $\mathbb{Z}^d$-actions on compact groups”, Ergodic Theory Dyn. Syst., 30:6 (2010), 1803–1816 | DOI | MR | Zbl

[9] Math. Notes, 79:6 (2006), 864–868 | DOI | DOI | MR | MR | Zbl

[10] Russian Math. Surveys, 61:4 (2006), 786–787 | DOI | DOI | MR | MR | Zbl

[11] U. Krengel, Ergodic theorems, Walter de Gruyter, Berlin—New York, 1985 | MR | Zbl

[12] I. Assani, Wiener Wintner ergodic theorems, World Scientific, Singapore, 2003 | MR | Zbl

[13] V. Bergelson, A. Leibman, C. G. Moreira, “From discrete-to continuous-time ergodic theorems”, Ergodic Theory Dyn. Syst., 32:2 (2012), 383–426 | DOI | MR | Zbl

[14] B. Marcus, K. Petersen, “Balancing ergodic averages”, Ergodic theory, Proceedings (Oberwolfach, Germany, 1978), Lectures notes in Maths., 729, eds. M. Denker, K. Jacobs, Springer-Verlag, Berlin, 1979, 126–143 | DOI | MR

[15] Funct. Anal. Appl., 19:2 (1985), 160–161 | DOI | MR | MR | Zbl

[16] C. Pugh, M. Shub, “Ergodic elements of ergodic actions”, Compos. Math., 23:1 (1971), 115–122 | MR | Zbl

[17] B.S. Thompson, J.B. Bruckner, A.M. Bruckner, Elementary Real Analysis, Second Edition, 2008 ClassicalRealAnalysis.com