Lower bound of the supremum of ergodic averages for ${\mathbb{Z}^d}$ and ${\mathbb{R}^d}$-actions
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 626-636

Voir la notice de l'article provenant de la source Math-Net.Ru

For ergodic ${\mathbb{Z}^d}$ and ${\mathbb{R}^d}$-actions, we obtain a pointwise lower bound for the supremum of ergodic averages. For ${\mathbb{Z}^d}$-actions in the case when the supremum is taken over multi-indices exceeding $\vec{n}$ located in a certain sector, the resulting inequality is not improvable over $\vec{n}$ in the class of all averaging integrable functions.
Keywords: rates of convergence in ergodic theorems, individual ergodic theorem, Wiener–Wintner ergodic theorem.
@article{SEMR_2020_17_a130,
     author = {I. V. Podvigin},
     title = {Lower bound of the supremum of ergodic averages for ${\mathbb{Z}^d}$ and ${\mathbb{R}^d}$-actions},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {626--636},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a130/}
}
TY  - JOUR
AU  - I. V. Podvigin
TI  - Lower bound of the supremum of ergodic averages for ${\mathbb{Z}^d}$ and ${\mathbb{R}^d}$-actions
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 626
EP  - 636
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a130/
LA  - en
ID  - SEMR_2020_17_a130
ER  - 
%0 Journal Article
%A I. V. Podvigin
%T Lower bound of the supremum of ergodic averages for ${\mathbb{Z}^d}$ and ${\mathbb{R}^d}$-actions
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 626-636
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a130/
%G en
%F SEMR_2020_17_a130
I. V. Podvigin. Lower bound of the supremum of ergodic averages for ${\mathbb{Z}^d}$ and ${\mathbb{R}^d}$-actions. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 626-636. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a130/