Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2020_17_a13, author = {A. I. Krasitskaya}, title = {Stability of the class of divisible $S$-acts}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {726--731}, publisher = {mathdoc}, volume = {17}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a13/} }
A. I. Krasitskaya. Stability of the class of divisible $S$-acts. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 726-731. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a13/
[1] A.V. Mikhalev, E.V. Ovchinnikova, E.A. Palyutin, A.A. Stepanova, “Model theoretic properties of regular polygons”, J. Math. Sci. (N.Y.), 140:2 (2007), 250–285 | DOI | MR
[2] V. Gould, A.V. Mikhalev, E.A. Palyutin, A.A. Stepanova, “Model theoretic properties of free, projective, and flat S-acts”, J. Math. Sci. New York, 164:2 (2010), 195–227 | DOI | MR | Zbl
[3] T.G. Mustafin, “On stability theory of polygons”, Trudy Inst. Mat., 8 (1988), 92–108 | MR | Zbl
[4] M. Kilp, U. Knauer, A.V. Mikhalev, Monoids, Acts and Categories, Walter De Gruyter, Berlin, 2000 | MR | Zbl
[5] A.I. Krasitskaya, A.A. Stepanova, Primitive normality and primitive connection of divisible acts, Algebra and Logic (to appear) | MR
[6] Yu.L. Ershov, E.A. Palyutin, Mathematical logic, Fizmathlit, M., 2011 | MR | Zbl
[7] C.C. Chang, H.J. Keisler, Model theory, Elsevier, New York, 1973 | MR | Zbl
[8] V.S. Bogomolov, T.G. Mustafin, “Description of commutative monoids over which all polygons are W-stable”, Algebra and Logic, New York, 28:4 (1989), 239–247 | MR | Zbl