Stability of the class of divisible $S$-acts
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 726-731

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe monoids $S$ such that the theory of the class of all divisible $S$-acts is stable, superstable or, for commutative monoid, $\omega$-stable. More precisely, we prove that the theory of the class of all divisible $S$-acts is stable (superstable) iff $S$ is a linearly ordered (well ordered) monoid. We also prove that for a commutative monoid $S$ the theory of the class of all divisible $S$-acts is $\omega$-stable iff $S$ is either an abelian group with at most countable number of subgroups or is finite and has only one proper ideal. Classes of regular, projective and strongly flat $S$-acts were considered in [1, 2]. Using results from [3] we obtain necessary and sufficient conditions for stability, superstability and $\omega$-stability of theories of classes of all divisible $S$-acts.
Keywords: monoid, stability, superstability, $\omega$-stability.
Mots-clés : divisible $S$-act
@article{SEMR_2020_17_a13,
     author = {A. I. Krasitskaya},
     title = {Stability of the class of divisible $S$-acts},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {726--731},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a13/}
}
TY  - JOUR
AU  - A. I. Krasitskaya
TI  - Stability of the class of divisible $S$-acts
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 726
EP  - 731
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a13/
LA  - en
ID  - SEMR_2020_17_a13
ER  - 
%0 Journal Article
%A A. I. Krasitskaya
%T Stability of the class of divisible $S$-acts
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 726-731
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a13/
%G en
%F SEMR_2020_17_a13
A. I. Krasitskaya. Stability of the class of divisible $S$-acts. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 726-731. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a13/