Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2020_17_a129, author = {V. Gol'dstein and Ya. A. Kopylov}, title = {The~Sobolev--Poincar\'e inequality and the~$L_{q,p}$-cohomology of~twisted cylinders}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {566--584}, publisher = {mathdoc}, volume = {17}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a129/} }
TY - JOUR AU - V. Gol'dstein AU - Ya. A. Kopylov TI - The~Sobolev--Poincar\'e inequality and the~$L_{q,p}$-cohomology of~twisted cylinders JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2020 SP - 566 EP - 584 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a129/ LA - en ID - SEMR_2020_17_a129 ER -
%0 Journal Article %A V. Gol'dstein %A Ya. A. Kopylov %T The~Sobolev--Poincar\'e inequality and the~$L_{q,p}$-cohomology of~twisted cylinders %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2020 %P 566-584 %V 17 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a129/ %G en %F SEMR_2020_17_a129
V. Gol'dstein; Ya. A. Kopylov. The~Sobolev--Poincar\'e inequality and the~$L_{q,p}$-cohomology of~twisted cylinders. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 566-584. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a129/
[1] R. L. Bishop, B. O'Neill, “Manifolds of negative curvature”, Trans. Am. Math. Soc., 145 (1969), 1–49 | DOI | MR | Zbl
[2] L. P. Bos, P. D. Milman, “Sobolev–Gagliardo–Nirenberg and Markov type inequalities on subanalytic domains”, Geom. Funct. Anal., 5:6 (1995), 853–923 | DOI | MR | Zbl
[3] R. Bott, L. W. Tu, Differential Forms in Algebraic Topology, Springer-Verlag, New York–Heidelberg–Berlin, 1982 | MR | Zbl
[4] A. Boulal, N. E. H. Djaa, M. Djaa, S. Ouakkas, “Harmonic maps on generalized warped product manifolds”, Bull. Math. Anal. Appl., 4:1 (2012), 156–165 | MR | Zbl
[5] B.- Y. Chen, Geometry of Submanifolds and Its Applications, Science University of Tokyo, Tokyo, 1981 | MR | Zbl
[6] N. E. H. Djaa, A. Boulal, A. Zagane, “Generalized warped product manifolds and biharmonic maps”, Acta Math. Univ. Comen. New Ser., 81:2 (2012), 283–298 | MR | Zbl
[7] M. P. do Carmo, Riemannian Geometry, Birkhäuser, Boston, MA etc., 1992 | MR | Zbl
[8] M. Falcitelli, “A class of almost contact metric manifolds and double-twisted products”, Math. Sci. Appl. E-Notes, 1:1 (2013), 36–57 | MR | Zbl
[9] M. Fernández-López, E. García-Río, D. N. Kupeli, B. Ünal, “A curvature condition for a twisted product to be a warped product”, Manuscr. Math., 106:2 (2001), 213–217 | DOI | MR | Zbl
[10] V. Gol'dshtein, Ya. A. Kopylov, “Reduced $L_{q,p}$-cohomology of some twisted products”, Annales Math. Blaise Pascal, 23:2 (2016), 151–169 | DOI | MR | Zbl
[11] V. M. Gol'dshtein, V. I. Kuz'minov, I. A. Shvedov, “$L_p$-cohomology of warped cylinders”, Siberian Math. J., 31:6 (1990), 919–925 | DOI | MR | Zbl
[12] V. M. Gol'dshtein, V. I. Kuz'minov, I. A. Shvedov, “Reduced $L_p$-cohomology of warped cylinders”, Siberian Math. J., 31:5 (1990), 716–727 | DOI | MR | Zbl
[13] V. Gol'dshtein, M. Troyanov, “Sobolev inequalities for differential forms and $L_{q,p}$-cohomology”, J. Geom. Anal., 16:4 (2006), 597–632 | DOI | MR | Zbl
[14] V. Gol'dshtein, M. Troyanov, “The Hölder–Poincaré duality for $L_{q,p}$-cohomology”, Ann. Global Anal. Geom., 41:1 (2012), 25–45 | DOI | MR | Zbl
[15] T. Iwaniec, A. Lutoborski, “Integral estimates for null Lagrangians”, Arch. Rational Mech. Anal., 125:1 (1993), 25–79 | DOI | MR | Zbl
[16] B. H. Kim, D. J. Seoung, T. H. Kang, H. K. Pak, “Conformal transformations in a twisted product space”, Bull. Korean Math. Soc., 42:1 (2005), 5–15 | DOI | MR | Zbl
[17] Ya. A. Kopylov, “$L_{p,q}$-cohomology and normal solvability”, Arch. Math., 89:1 (2007), 87–96 | DOI | MR | Zbl
[18] Ya. A. Kopylov, “$L_{p,q}$-cohomology of warped cylinders”, Annales Math. Blaise Pascal, 16:2 (2009), 321–338 | DOI | MR | Zbl
[19] V. I. Kuz'minov, I. A. Shvedov, “On normal solvability of the exterior differentiation on a warped cylinder”, Siberian Math. J., 34:1 (1993), 73–82 | DOI | MR | Zbl
[20] V. I. Kuz'minov, I. A. Shvedov, “On normal solvability of the operator of exterior derivation on warped products”, Siberian Math. J., 37:2 (1996), 276–287 | DOI | MR | Zbl
[21] R. Ponge, H. Reckziegel, “Twisted products in pseudo-Riemannian geometry”, Geom. Dedicata, 48:1 (1993), 15–25 | DOI | MR | Zbl
[22] L. Shartser, De Rham Theory and Semialgebraic Geometry, Thesis (Ph.D.), University of Toronto, Canada, 2011 | MR
[23] L. Shartser, “Explicit proof of Poincare inequality for differential forms on manifolds”, C. R. Math. Acad. Sci. Soc. R. Can., 33:1 (2011), 21–32 | MR | Zbl