The~Sobolev--Poincar\'e inequality and the~$L_{q,p}$-cohomology of~twisted cylinders
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 566-584

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish a vanishing result for the $L_{q,p}$-cohomology (${q\ge p}$) of a twisted cylinder, which is a generalization of a warped cylinder. The result is new even for warped cylinders. We base on the methods for proving the $(p,q)$-Sobolev–Poincaré inequality developed by L. Shartser.
Keywords: differential form, Sobolev–Poincaré inequality, $L_{q,p}$-cohomology, twisted cylinder, homotopy operator.
@article{SEMR_2020_17_a129,
     author = {V. Gol'dstein and Ya. A. Kopylov},
     title = {The~Sobolev--Poincar\'e inequality and the~$L_{q,p}$-cohomology of~twisted cylinders},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {566--584},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a129/}
}
TY  - JOUR
AU  - V. Gol'dstein
AU  - Ya. A. Kopylov
TI  - The~Sobolev--Poincar\'e inequality and the~$L_{q,p}$-cohomology of~twisted cylinders
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 566
EP  - 584
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a129/
LA  - en
ID  - SEMR_2020_17_a129
ER  - 
%0 Journal Article
%A V. Gol'dstein
%A Ya. A. Kopylov
%T The~Sobolev--Poincar\'e inequality and the~$L_{q,p}$-cohomology of~twisted cylinders
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 566-584
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a129/
%G en
%F SEMR_2020_17_a129
V. Gol'dstein; Ya. A. Kopylov. The~Sobolev--Poincar\'e inequality and the~$L_{q,p}$-cohomology of~twisted cylinders. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 566-584. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a129/