The~Sobolev--Poincar\'e inequality and the~$L_{q,p}$-cohomology of~twisted cylinders
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 566-584.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish a vanishing result for the $L_{q,p}$-cohomology (${q\ge p}$) of a twisted cylinder, which is a generalization of a warped cylinder. The result is new even for warped cylinders. We base on the methods for proving the $(p,q)$-Sobolev–Poincaré inequality developed by L. Shartser.
Keywords: differential form, Sobolev–Poincaré inequality, $L_{q,p}$-cohomology, twisted cylinder, homotopy operator.
@article{SEMR_2020_17_a129,
     author = {V. Gol'dstein and Ya. A. Kopylov},
     title = {The~Sobolev--Poincar\'e inequality and the~$L_{q,p}$-cohomology of~twisted cylinders},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {566--584},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a129/}
}
TY  - JOUR
AU  - V. Gol'dstein
AU  - Ya. A. Kopylov
TI  - The~Sobolev--Poincar\'e inequality and the~$L_{q,p}$-cohomology of~twisted cylinders
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 566
EP  - 584
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a129/
LA  - en
ID  - SEMR_2020_17_a129
ER  - 
%0 Journal Article
%A V. Gol'dstein
%A Ya. A. Kopylov
%T The~Sobolev--Poincar\'e inequality and the~$L_{q,p}$-cohomology of~twisted cylinders
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 566-584
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a129/
%G en
%F SEMR_2020_17_a129
V. Gol'dstein; Ya. A. Kopylov. The~Sobolev--Poincar\'e inequality and the~$L_{q,p}$-cohomology of~twisted cylinders. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 566-584. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a129/

[1] R. L. Bishop, B. O'Neill, “Manifolds of negative curvature”, Trans. Am. Math. Soc., 145 (1969), 1–49 | DOI | MR | Zbl

[2] L. P. Bos, P. D. Milman, “Sobolev–Gagliardo–Nirenberg and Markov type inequalities on subanalytic domains”, Geom. Funct. Anal., 5:6 (1995), 853–923 | DOI | MR | Zbl

[3] R. Bott, L. W. Tu, Differential Forms in Algebraic Topology, Springer-Verlag, New York–Heidelberg–Berlin, 1982 | MR | Zbl

[4] A. Boulal, N. E. H. Djaa, M. Djaa, S. Ouakkas, “Harmonic maps on generalized warped product manifolds”, Bull. Math. Anal. Appl., 4:1 (2012), 156–165 | MR | Zbl

[5] B.- Y. Chen, Geometry of Submanifolds and Its Applications, Science University of Tokyo, Tokyo, 1981 | MR | Zbl

[6] N. E. H. Djaa, A. Boulal, A. Zagane, “Generalized warped product manifolds and biharmonic maps”, Acta Math. Univ. Comen. New Ser., 81:2 (2012), 283–298 | MR | Zbl

[7] M. P. do Carmo, Riemannian Geometry, Birkhäuser, Boston, MA etc., 1992 | MR | Zbl

[8] M. Falcitelli, “A class of almost contact metric manifolds and double-twisted products”, Math. Sci. Appl. E-Notes, 1:1 (2013), 36–57 | MR | Zbl

[9] M. Fernández-López, E. García-Río, D. N. Kupeli, B. Ünal, “A curvature condition for a twisted product to be a warped product”, Manuscr. Math., 106:2 (2001), 213–217 | DOI | MR | Zbl

[10] V. Gol'dshtein, Ya. A. Kopylov, “Reduced $L_{q,p}$-cohomology of some twisted products”, Annales Math. Blaise Pascal, 23:2 (2016), 151–169 | DOI | MR | Zbl

[11] V. M. Gol'dshtein, V. I. Kuz'minov, I. A. Shvedov, “$L_p$-cohomology of warped cylinders”, Siberian Math. J., 31:6 (1990), 919–925 | DOI | MR | Zbl

[12] V. M. Gol'dshtein, V. I. Kuz'minov, I. A. Shvedov, “Reduced $L_p$-cohomology of warped cylinders”, Siberian Math. J., 31:5 (1990), 716–727 | DOI | MR | Zbl

[13] V. Gol'dshtein, M. Troyanov, “Sobolev inequalities for differential forms and $L_{q,p}$-cohomology”, J. Geom. Anal., 16:4 (2006), 597–632 | DOI | MR | Zbl

[14] V. Gol'dshtein, M. Troyanov, “The Hölder–Poincaré duality for $L_{q,p}$-cohomology”, Ann. Global Anal. Geom., 41:1 (2012), 25–45 | DOI | MR | Zbl

[15] T. Iwaniec, A. Lutoborski, “Integral estimates for null Lagrangians”, Arch. Rational Mech. Anal., 125:1 (1993), 25–79 | DOI | MR | Zbl

[16] B. H. Kim, D. J. Seoung, T. H. Kang, H. K. Pak, “Conformal transformations in a twisted product space”, Bull. Korean Math. Soc., 42:1 (2005), 5–15 | DOI | MR | Zbl

[17] Ya. A. Kopylov, “$L_{p,q}$-cohomology and normal solvability”, Arch. Math., 89:1 (2007), 87–96 | DOI | MR | Zbl

[18] Ya. A. Kopylov, “$L_{p,q}$-cohomology of warped cylinders”, Annales Math. Blaise Pascal, 16:2 (2009), 321–338 | DOI | MR | Zbl

[19] V. I. Kuz'minov, I. A. Shvedov, “On normal solvability of the exterior differentiation on a warped cylinder”, Siberian Math. J., 34:1 (1993), 73–82 | DOI | MR | Zbl

[20] V. I. Kuz'minov, I. A. Shvedov, “On normal solvability of the operator of exterior derivation on warped products”, Siberian Math. J., 37:2 (1996), 276–287 | DOI | MR | Zbl

[21] R. Ponge, H. Reckziegel, “Twisted products in pseudo-Riemannian geometry”, Geom. Dedicata, 48:1 (1993), 15–25 | DOI | MR | Zbl

[22] L. Shartser, De Rham Theory and Semialgebraic Geometry, Thesis (Ph.D.), University of Toronto, Canada, 2011 | MR

[23] L. Shartser, “Explicit proof of Poincare inequality for differential forms on manifolds”, C. R. Math. Acad. Sci. Soc. R. Can., 33:1 (2011), 21–32 | MR | Zbl