On the de Rham complex on a scale of anisotropic weighted H\"older spaces
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 428-444.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a solvabilty criterion for the operator equations induced by de Rham differentials on a scale of anisotropic weighted Hölder spaces on the strip $\mathbb{R}^n \times [0,T]$, $n\geq 1$, where the weight controls the behavior of elements at the infinity point with respect to the space variables. Besides, we give a description of the closures in these space of the set of infinitely differentiable functions on the strip $\mathbb{R}^n \times [0,T]$ that are compactly supported with respect to the space variables. The results are applied to study the properties of the famous Leray-Helmholtz projection from the theory of the Navier-Stokes equations on the scale of these weighted spaces for $n\geq 2$.
Keywords: weighted Hölder spaces, de Rham complex.
@article{SEMR_2020_17_a128,
     author = {K. V. Gagelgans and A. A. Shlapunov},
     title = {On the de {Rham} complex on a scale of anisotropic weighted {H\"older} spaces},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {428--444},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a128/}
}
TY  - JOUR
AU  - K. V. Gagelgans
AU  - A. A. Shlapunov
TI  - On the de Rham complex on a scale of anisotropic weighted H\"older spaces
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 428
EP  - 444
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a128/
LA  - en
ID  - SEMR_2020_17_a128
ER  - 
%0 Journal Article
%A K. V. Gagelgans
%A A. A. Shlapunov
%T On the de Rham complex on a scale of anisotropic weighted H\"older spaces
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 428-444
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a128/
%G en
%F SEMR_2020_17_a128
K. V. Gagelgans; A. A. Shlapunov. On the de Rham complex on a scale of anisotropic weighted H\"older spaces. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 428-444. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a128/

[1] S.L. Sobolev, Some Applications of Functional Analysis to Mathematical Physics, Nauka, M., 1988 | MR | Zbl

[2] N.M. Gunther, La théorie du potentiel et ses Applications aux problémes fondamentaux de la physique mathématique, Gauthier-Villars, Paris, 1934 | Zbl

[3] D. Gilbarg, N. Trudinger, Elliptic Partial Differential Equations of second order, Springer-Verlag, Berlin, 1983 | MR | Zbl

[4] O.A. Ladyzhenskaya, V.A. Solonnikov, N.N. Ural'tseva, Linear and Quasilinear Equations of Parabolic Type, Nauka, M., 1967 | MR | Zbl

[5] O.A. Ladyzhenskaya, N.N. Ural'tseva, Linear and Quasilinear Equations of Elliptic Type, Nauka, M., 1973 | MR | Zbl

[6] S. Krantz, “Intrinsic Lipschitz classes on manifolds with applications to complex function theory and estimates for the $\overline \partial$ and $\overline \partial_b$ equations”, Manuscr. Math., 24:4 (1978), 351–378 | MR | Zbl

[7] O.A. Ladyzhenskaya, Mathematical questions of the dynamics of a viscous incompressible fluid, Nauka, M., 1970 | MR | Zbl

[8] A. Bertozzi, A. Majda, Vorticity and Incompressible Flows, Cambridge University Press, Cambridge, 2002 | MR | Zbl

[9] L.I. Nicolaescu, Lectures on the Geometry of Manifolds, World Scientific, London, 2007 | MR | Zbl

[10] T. Behrndt, “On the Cauchy problem for the heat equation on Riemannian manifolds with conical singularities”, Q. J. Math., 64:4 (2011), 981–1007 | MR | Zbl

[11] A. Shlapunov, N. Tarkhanov, “An Open Mapping Theorem for the Navier-Stokes Equations”, Advances and Applications in Fluid Mechanics, 21:2 (2018), 127–246

[12] R. McOwen, “The behavior of the Laplacian on weighted Sobolev spaces”, Comm. Pure Appl. Math., 32 (1979), 783–795 | MR | Zbl

[13] R. Lockhart, R. McOwen, “Elliptic differential operators on noncompact manifolds”, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV, 12:3 (1985), 409–447 | MR | Zbl

[14] K.V. Sidorova (Gagelgans), A.A. Shlapunov, “On the Closure of Smooth Compactly Supported Functions in Weighted Holder Spaces”, Math. Notes, 105:4 (2019), 604-–617 | MR | Zbl

[15] N. Tarkhanov, The Cauchy Problem for Solutions of Elliptic Equations, Akademie-Verlag, Berlin, 1995 | MR | Zbl

[16] V. Mazya, J. Rossmann, “Schauder estimates for solutions to boundary value problems for second order elliptic systems in polyhedral domains”, Appl. Anal., 83:3 2004, 271–308 | MR | Zbl

[17] V.A. Kondrat'ev, “Boundary problems for parabolic equations in closed domains”, Trans. Mosc. Math. Soc., 15 (1966), 450–504 | Zbl

[18] N.V. Krylov, Lectures on elliptic and parabolic equations in Hölder spaces, Graduate Studies in Math., 12, AMS, Providence, RI, 1996 | MR | Zbl

[19] L. Hörmander, The analysis of linear partial differential operators, v. I, Distribution theory and Fourier analysis, Springer-Verlag, Berlin–Heidelberg, 1983 | MR | Zbl

[20] N. Tarkhanov, Complexes of differential operators, Kluwer Ac. Publ., Dordrecht, 1995 | MR | Zbl