Approximation of discrete functions using special series by modified Meixner polynomials
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 395-405.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article is devoted to the study of approximative properties of the special series by modified Meixner polynomials $M_{n,N}^\alpha(x)$ $(n=0, 1, \dots)$. For $\alpha>-1$ these polynomials form an orthogonal system on the grid $\Omega_{\delta}=\{0, \delta, 2\delta, \ldots\}$ with respect to the weight function $w(x)=e^{-x}\frac{\Gamma(Nx+\alpha+1)}{\Gamma(Nx+1)}$, where $\delta=\frac{1}{N}$, $N>0$. We obtained upper estimate on $\left[\frac{\theta_n}{2},\infty\right)$ for the Lebesgue function of partial sums of a special series, where $\theta_n=4n+2\alpha+2$.
Keywords: Meixner polynomials, Fourier series, special series
Mots-clés : Lebesgue function.
@article{SEMR_2020_17_a127,
     author = {R. M. Gadzhimirzaev},
     title = {Approximation of discrete functions using special series by modified {Meixner} polynomials},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {395--405},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a127/}
}
TY  - JOUR
AU  - R. M. Gadzhimirzaev
TI  - Approximation of discrete functions using special series by modified Meixner polynomials
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 395
EP  - 405
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a127/
LA  - en
ID  - SEMR_2020_17_a127
ER  - 
%0 Journal Article
%A R. M. Gadzhimirzaev
%T Approximation of discrete functions using special series by modified Meixner polynomials
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 395-405
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a127/
%G en
%F SEMR_2020_17_a127
R. M. Gadzhimirzaev. Approximation of discrete functions using special series by modified Meixner polynomials. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 395-405. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a127/

[1] R.M. Gadzhimirzaev, “Approximative properties of special series in Meixner polynomials”, Vladikavkaz. Mat. Zh., 20:3 (2018), 21–36 | MR

[2] I.I. Sharapudinov, Polynomials orthogonal on the grid, DSU publishing, Makhachkala, 1997

[3] Z.D. Gadzhieva, Mixed series of Meixner polynomials, PhD thesis, Saratov State. Univ., Saratov, 2004

[4] R.M. Gadzhimirzaev, “Approximation of functions defined on the grid $\{0, \delta, 2\delta, \ldots\}$ by Fourier-Meixner sums”, Daghestan electronic mathematical reports, 7 (2017), 61–65

[5] I.I. Sharapudinov, “Asymptotics and weighted estimates of Meixner polynomials orthogonal on the gird $\{0,\delta, 2\delta, \ldots\}$”, Math. Notes, 62:4 (1997), 501–512 | MR | Zbl

[6] R.M. Gadzhimirzaev, “The Fourier series by Meixner polynomials orthogonal with respect to the Sobolev-type inner product”, Izv. Sarat. Univ., 16:4 (N.S.), Ser. Math. Mech. Inform. | MR | Zbl