Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2020_17_a127, author = {R. M. Gadzhimirzaev}, title = {Approximation of discrete functions using special series by modified {Meixner} polynomials}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {395--405}, publisher = {mathdoc}, volume = {17}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a127/} }
TY - JOUR AU - R. M. Gadzhimirzaev TI - Approximation of discrete functions using special series by modified Meixner polynomials JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2020 SP - 395 EP - 405 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a127/ LA - en ID - SEMR_2020_17_a127 ER -
R. M. Gadzhimirzaev. Approximation of discrete functions using special series by modified Meixner polynomials. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 395-405. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a127/
[1] R.M. Gadzhimirzaev, “Approximative properties of special series in Meixner polynomials”, Vladikavkaz. Mat. Zh., 20:3 (2018), 21–36 | MR
[2] I.I. Sharapudinov, Polynomials orthogonal on the grid, DSU publishing, Makhachkala, 1997
[3] Z.D. Gadzhieva, Mixed series of Meixner polynomials, PhD thesis, Saratov State. Univ., Saratov, 2004
[4] R.M. Gadzhimirzaev, “Approximation of functions defined on the grid $\{0, \delta, 2\delta, \ldots\}$ by Fourier-Meixner sums”, Daghestan electronic mathematical reports, 7 (2017), 61–65
[5] I.I. Sharapudinov, “Asymptotics and weighted estimates of Meixner polynomials orthogonal on the gird $\{0,\delta, 2\delta, \ldots\}$”, Math. Notes, 62:4 (1997), 501–512 | MR | Zbl
[6] R.M. Gadzhimirzaev, “The Fourier series by Meixner polynomials orthogonal with respect to the Sobolev-type inner product”, Izv. Sarat. Univ., 16:4 (N.S.), Ser. Math. Mech. Inform. | MR | Zbl