Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2020_17_a126, author = {R. Abdullaev and V. Chilin and B. Madaminov}, title = {Isometries of spaces of $LOG$-integrable functions}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {218--226}, publisher = {mathdoc}, volume = {17}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a126/} }
TY - JOUR AU - R. Abdullaev AU - V. Chilin AU - B. Madaminov TI - Isometries of spaces of $LOG$-integrable functions JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2020 SP - 218 EP - 226 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a126/ LA - en ID - SEMR_2020_17_a126 ER -
R. Abdullaev; V. Chilin; B. Madaminov. Isometries of spaces of $LOG$-integrable functions. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 218-226. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a126/
[1] R.Z. Abdullaev, V.I. Chilin, “Isomorphic Classification of $\ast$-algebras of log-integrable measurable functions”, Algebra, complex analysis, and pluripotential theory, USUZCAMP 2017, v. 2, Springer Proc. Math. Stat., 264, 2018, 73–83 | MR | Zbl
[2] S. Banach, Theory of Linear Operations, North–Holland, Amsterdam ets., 1987 | MR | Zbl
[3] V. Chilin, S. Litvinov, “The validity space of Dunford-Schwartz pointwise ergodic theorem”, J. Math. Anal. Appl., 461:1 (2018), 234-–247 | MR | Zbl
[4] K. Dykema, F. Sukochev, D. Zanin, “Algebras of log-integrable functions and operators”, Complex Anal. Oper. Theory, 10:8 (2016), 1775–1787 | MR | Zbl
[5] P.R. Halmos, Measure Theory, Springer–Verlag, New York–Heidelber–Berlin, 1974 | MR | Zbl
[6] J. Huang, F. Sukochev, D. Zanin, “Logarithmic submajorisation and order-preserving linear isometries”, J. Funct. Anal., 278:4 (2020), 108352 | MR | Zbl
[7] R. Fleming, J.E. Jamison, Isometries on Banach spaces: Function spaces, CRC Press Company, Boca Raton–London–New York–Washington, D.C., 2003 | MR | Zbl
[8] N.J. Kalton, N.T Peck, J.W. Roberts, An $F$-space sampler, London Math. Society lecture series, 89, Cambridge University Press, Cambridge etc., 1984 | MR | Zbl
[9] J. Lamperti, “On the isometries of certain function-spaces”, Pac. J. Math., 8 (1958), 459–466 | MR | Zbl
[10] D.A. Vladimirov, Boolean Algebras in Analysis, Mathematics and its Applications, 540, Kluwer Academic Publishers, Dordrecht, 2002 | MR | Zbl