Isometries of spaces of $LOG$-integrable functions
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 218-226.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the $F$-space $(L_{\log}(\Omega, \mu), \|\cdot\|_{\log})$ of $\log$-integrable functions defined on measure space $(\Omega, \mu)$ with finite measure. We prove that $(L_{\log}(\Omega_1, \mu_1), \|\cdot\|_{\log})$ and $(L_{\log}(\Omega_2, \mu_2), \|\cdot\|_{\log})$ are isometric if and only if there exists a measure preserving isomorphism from $(\Omega_1, \mu_1)$ onto $(\Omega_2, \mu_2)$.
Keywords: $F$-spaces, isometries, Boolean algebras, measure preserving isomorphisms, log-integrable functions.
@article{SEMR_2020_17_a126,
     author = {R. Abdullaev and V. Chilin and B. Madaminov},
     title = {Isometries of spaces of $LOG$-integrable functions},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {218--226},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a126/}
}
TY  - JOUR
AU  - R. Abdullaev
AU  - V. Chilin
AU  - B. Madaminov
TI  - Isometries of spaces of $LOG$-integrable functions
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 218
EP  - 226
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a126/
LA  - en
ID  - SEMR_2020_17_a126
ER  - 
%0 Journal Article
%A R. Abdullaev
%A V. Chilin
%A B. Madaminov
%T Isometries of spaces of $LOG$-integrable functions
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 218-226
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a126/
%G en
%F SEMR_2020_17_a126
R. Abdullaev; V. Chilin; B. Madaminov. Isometries of spaces of $LOG$-integrable functions. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 218-226. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a126/

[1] R.Z. Abdullaev, V.I. Chilin, “Isomorphic Classification of $\ast$-algebras of log-integrable measurable functions”, Algebra, complex analysis, and pluripotential theory, USUZCAMP 2017, v. 2, Springer Proc. Math. Stat., 264, 2018, 73–83 | MR | Zbl

[2] S. Banach, Theory of Linear Operations, North–Holland, Amsterdam ets., 1987 | MR | Zbl

[3] V. Chilin, S. Litvinov, “The validity space of Dunford-Schwartz pointwise ergodic theorem”, J. Math. Anal. Appl., 461:1 (2018), 234-–247 | MR | Zbl

[4] K. Dykema, F. Sukochev, D. Zanin, “Algebras of log-integrable functions and operators”, Complex Anal. Oper. Theory, 10:8 (2016), 1775–1787 | MR | Zbl

[5] P.R. Halmos, Measure Theory, Springer–Verlag, New York–Heidelber–Berlin, 1974 | MR | Zbl

[6] J. Huang, F. Sukochev, D. Zanin, “Logarithmic submajorisation and order-preserving linear isometries”, J. Funct. Anal., 278:4 (2020), 108352 | MR | Zbl

[7] R. Fleming, J.E. Jamison, Isometries on Banach spaces: Function spaces, CRC Press Company, Boca Raton–London–New York–Washington, D.C., 2003 | MR | Zbl

[8] N.J. Kalton, N.T Peck, J.W. Roberts, An $F$-space sampler, London Math. Society lecture series, 89, Cambridge University Press, Cambridge etc., 1984 | MR | Zbl

[9] J. Lamperti, “On the isometries of certain function-spaces”, Pac. J. Math., 8 (1958), 459–466 | MR | Zbl

[10] D.A. Vladimirov, Boolean Algebras in Analysis, Mathematics and its Applications, 540, Kluwer Academic Publishers, Dordrecht, 2002 | MR | Zbl