On automorphisms of CR-submanifolds of complex Hilbert space
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 126-140

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that there exists only one tolally nondegenerate CR manifold of type $(n,\infty)$ (up to the formal equivalence), and the dimension of its Lie algebra $\mathfrak{g}_{+}$ of positively graded formal tangent vector fields is infinite. Examples of manifolds of type $(n,\infty)$ with algebras of any given in advance finite dimension are presented.
Keywords: CR manifold, automorphisms, totally nondegenerate manifold.
@article{SEMR_2020_17_a125,
     author = {M. A. Stepanova},
     title = {On automorphisms of {CR-submanifolds} of complex {Hilbert} space},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {126--140},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a125/}
}
TY  - JOUR
AU  - M. A. Stepanova
TI  - On automorphisms of CR-submanifolds of complex Hilbert space
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 126
EP  - 140
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a125/
LA  - ru
ID  - SEMR_2020_17_a125
ER  - 
%0 Journal Article
%A M. A. Stepanova
%T On automorphisms of CR-submanifolds of complex Hilbert space
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 126-140
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a125/
%G ru
%F SEMR_2020_17_a125
M. A. Stepanova. On automorphisms of CR-submanifolds of complex Hilbert space. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 126-140. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a125/