Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2020_17_a123, author = {B. M. Shumilov}, title = {Splitting algorithm for cubic spline-wavelets with two vanishing moments on the interval}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {2105--2121}, publisher = {mathdoc}, volume = {17}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a123/} }
TY - JOUR AU - B. M. Shumilov TI - Splitting algorithm for cubic spline-wavelets with two vanishing moments on the interval JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2020 SP - 2105 EP - 2121 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a123/ LA - ru ID - SEMR_2020_17_a123 ER -
B. M. Shumilov. Splitting algorithm for cubic spline-wavelets with two vanishing moments on the interval. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 2105-2121. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a123/
[1] C.K. Chui, An Introduction to Wavelets, Academic Press, Boston, 1992 | MR | Zbl
[2] M.W. Frazier, An introduction to wavelets through linear algebra, Springer-Verlag, New York, 1999 | MR | Zbl
[3] M. Lyche, K. M\'ørken, E. Quak, “Theory and algorithms for non-uniform spline wavelets”, Multivariate approximation and applications, eds. Dyn N. et al., Cambridge University Press, Cambridge, 2001, 152–187 | DOI | MR | Zbl
[4] K. Koro, K. Abe, “Non-orthogonal spline wavelets for boundary element analysis”, Eng. Anal. Bound. Elem., 25:3 (2001), 149–164 | DOI | Zbl
[5] I.Y. Novikov, V.Y. Protasov, M.A. Skopina, Wavelet Theory, Translations of Mathematical Monographs, 239, AMS, Providence (RI), 2011 | DOI | MR | Zbl
[6] M. Jansen, “Non-equispaced B-spline wavelets”, Int. J. Wavelets Multiresolut. Inf. Process., 14:6 (2016), 1650056 | DOI | MR | Zbl
[7] D. Ĉerná, V. Finêk, “Cubic spline wavelets with complementary boundary conditions”, Appl. Math. Comput., 219:4 (2012), 1853–1865 | DOI | MR | Zbl
[8] B. Han, Z. Shen, “Wavelets with Short Support”, SIAM J. Math. Anal., 38:2 (2006), 530–556 | DOI | MR | Zbl
[9] D. Ĉerná, V. Finêk, “Cubic spline wavelets with short support for fourth-order problems”, Appl. Math. Comput., 243 (2014), 44–56 | DOI | MR | Zbl
[10] B.M. Shumilov, “Multiwavelets of the third-degree Hermitian splines orthogonal to cubic polynomials”, Mat. Model., 25:4 (2013), 17–28 | MR | Zbl
[11] B.M. Shumilov, “Displaced Multiwavelets and Splitting Algorithms”, Advanced Engineering Materials and Modeling, eds. A. Tiwari, N.A. Murugan, R. Ahuja, John Wiley Sons, Ltd, Hoboken, NJ, USA, 2016, 435–494 | DOI
[12] F. Aràndiga, A. Baeza, R. Donat, “Discrete multiresolution based on hermite interpolation: computing derivatives”, Commun. Nonlinear Sci. Numer. Simul., 9:2 (2004), 263–273 | DOI | MR | Zbl
[13] J. Wang, “Cubic spline wavelet bases of Sobolev spaces and multilevel interpolation”, Appl. Comput. Harmon. Anal., 3:2 (1996), 154–163 | DOI | MR | Zbl
[14] B.M. Shumilov, “Semi-orthogonal spline-wavelets with derivatives and the algorithm with splitting”, Numer. Analysis Appl., 10:1 (2017), 90–100 | DOI | MR | Zbl
[15] E.J. Stollnitz, T.D. DeRose, D.H. Salesin, Wavelets for Computer Graphics, The Morgan Kaufmann Series in Computer Graphics, 1996
[16] C. De Boor, A practical guide to splines, Applied Mathematical Sciences, 27, Springer-Verlag, New York, 1978 | DOI | MR | Zbl
[17] B.M. Shumilov, S.M. Matanov, “Supercompact cubic multiwavelets and algorithm with splitting”, 2011 International Conference on Multimedia Technology, 2011, 2636–2639 | MR
[18] B.M. Shumilov, “Cubic multiwavelets orthogonal to polynomials and a splitting algorithm”, Numer. Analysis Appl., 6:3 (2013), 247–259 | DOI | MR | Zbl
[19] A.A. Samarskii, E.S. Nikolaev, Numerical methods for grid equations, v. I, Iterative methods, Birkhauser, Basel, 1989 | MR | Zbl
[20] Z.M. Sulaimanov, B.M. Shumilov, “A splitting algorithm for the wavelet transform of cubic splines on a nonuniform grid”, Comput. Math. Math. Phys., 57:10 (2017), 1577–1591 | DOI | MR | Zbl
[21] G. Strang, T. Nguyen, Wavelets and filter banks, Cambridge Press, Wellesley, 1996 | MR | Zbl
[22] P. Qian, B.A. Francis, “Solution of a wavelet crime”, Topics in control and its applications, A tribute to Edward J. Davison (Toronto, Canada, June 29–30, 1998), eds. D. Miller et al., Springer, London, 1999, 143–156 | DOI | MR | Zbl
[23] W. Rakowski, “Prefiltering in Wavelet Analysis Applying Cubic B-Splines”, International Journal of Electronics and Telecommunications, 60:4 (2014), 331–340 | DOI