Splitting algorithm for cubic spline-wavelets with two vanishing moments on the interval
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 2105-2121

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with the use of the first two vanishing moments for constructing cubic spline-wavelets meeting orthogonality conditions to polynomials of the first degree. A decrease in the supports of these wavelets is shown in comparison with the classical semiorthogonal wavelets. For splines with homogeneous Dirichlet boundary conditions of the first order, an algorithm of the shifted wavelet transform is obtained in the form of a solution of tridiagonal systems of linear algebraic equations with a strict diagonal dominance. Results of numerical experiments on data processing are presented.
Keywords: $B$-splines, wavelets
Mots-clés : implicit decomposition relations.
@article{SEMR_2020_17_a123,
     author = {B. M. Shumilov},
     title = {Splitting algorithm for cubic spline-wavelets with two vanishing moments on the interval},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {2105--2121},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a123/}
}
TY  - JOUR
AU  - B. M. Shumilov
TI  - Splitting algorithm for cubic spline-wavelets with two vanishing moments on the interval
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 2105
EP  - 2121
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a123/
LA  - ru
ID  - SEMR_2020_17_a123
ER  - 
%0 Journal Article
%A B. M. Shumilov
%T Splitting algorithm for cubic spline-wavelets with two vanishing moments on the interval
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 2105-2121
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a123/
%G ru
%F SEMR_2020_17_a123
B. M. Shumilov. Splitting algorithm for cubic spline-wavelets with two vanishing moments on the interval. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 2105-2121. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a123/