Splitting algorithm for cubic spline-wavelets with two vanishing moments on the interval
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 2105-2121.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with the use of the first two vanishing moments for constructing cubic spline-wavelets meeting orthogonality conditions to polynomials of the first degree. A decrease in the supports of these wavelets is shown in comparison with the classical semiorthogonal wavelets. For splines with homogeneous Dirichlet boundary conditions of the first order, an algorithm of the shifted wavelet transform is obtained in the form of a solution of tridiagonal systems of linear algebraic equations with a strict diagonal dominance. Results of numerical experiments on data processing are presented.
Keywords: $B$-splines, wavelets
Mots-clés : implicit decomposition relations.
@article{SEMR_2020_17_a123,
     author = {B. M. Shumilov},
     title = {Splitting algorithm for cubic spline-wavelets with two vanishing moments on the interval},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {2105--2121},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a123/}
}
TY  - JOUR
AU  - B. M. Shumilov
TI  - Splitting algorithm for cubic spline-wavelets with two vanishing moments on the interval
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 2105
EP  - 2121
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a123/
LA  - ru
ID  - SEMR_2020_17_a123
ER  - 
%0 Journal Article
%A B. M. Shumilov
%T Splitting algorithm for cubic spline-wavelets with two vanishing moments on the interval
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 2105-2121
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a123/
%G ru
%F SEMR_2020_17_a123
B. M. Shumilov. Splitting algorithm for cubic spline-wavelets with two vanishing moments on the interval. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 2105-2121. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a123/

[1] C.K. Chui, An Introduction to Wavelets, Academic Press, Boston, 1992 | MR | Zbl

[2] M.W. Frazier, An introduction to wavelets through linear algebra, Springer-Verlag, New York, 1999 | MR | Zbl

[3] M. Lyche, K. M\'ørken, E. Quak, “Theory and algorithms for non-uniform spline wavelets”, Multivariate approximation and applications, eds. Dyn N. et al., Cambridge University Press, Cambridge, 2001, 152–187 | DOI | MR | Zbl

[4] K. Koro, K. Abe, “Non-orthogonal spline wavelets for boundary element analysis”, Eng. Anal. Bound. Elem., 25:3 (2001), 149–164 | DOI | Zbl

[5] I.Y. Novikov, V.Y. Protasov, M.A. Skopina, Wavelet Theory, Translations of Mathematical Monographs, 239, AMS, Providence (RI), 2011 | DOI | MR | Zbl

[6] M. Jansen, “Non-equispaced B-spline wavelets”, Int. J. Wavelets Multiresolut. Inf. Process., 14:6 (2016), 1650056 | DOI | MR | Zbl

[7] D. Ĉerná, V. Finêk, “Cubic spline wavelets with complementary boundary conditions”, Appl. Math. Comput., 219:4 (2012), 1853–1865 | DOI | MR | Zbl

[8] B. Han, Z. Shen, “Wavelets with Short Support”, SIAM J. Math. Anal., 38:2 (2006), 530–556 | DOI | MR | Zbl

[9] D. Ĉerná, V. Finêk, “Cubic spline wavelets with short support for fourth-order problems”, Appl. Math. Comput., 243 (2014), 44–56 | DOI | MR | Zbl

[10] B.M. Shumilov, “Multiwavelets of the third-degree Hermitian splines orthogonal to cubic polynomials”, Mat. Model., 25:4 (2013), 17–28 | MR | Zbl

[11] B.M. Shumilov, “Displaced Multiwavelets and Splitting Algorithms”, Advanced Engineering Materials and Modeling, eds. A. Tiwari, N.A. Murugan, R. Ahuja, John Wiley Sons, Ltd, Hoboken, NJ, USA, 2016, 435–494 | DOI

[12] F. Aràndiga, A. Baeza, R. Donat, “Discrete multiresolution based on hermite interpolation: computing derivatives”, Commun. Nonlinear Sci. Numer. Simul., 9:2 (2004), 263–273 | DOI | MR | Zbl

[13] J. Wang, “Cubic spline wavelet bases of Sobolev spaces and multilevel interpolation”, Appl. Comput. Harmon. Anal., 3:2 (1996), 154–163 | DOI | MR | Zbl

[14] B.M. Shumilov, “Semi-orthogonal spline-wavelets with derivatives and the algorithm with splitting”, Numer. Analysis Appl., 10:1 (2017), 90–100 | DOI | MR | Zbl

[15] E.J. Stollnitz, T.D. DeRose, D.H. Salesin, Wavelets for Computer Graphics, The Morgan Kaufmann Series in Computer Graphics, 1996

[16] C. De Boor, A practical guide to splines, Applied Mathematical Sciences, 27, Springer-Verlag, New York, 1978 | DOI | MR | Zbl

[17] B.M. Shumilov, S.M. Matanov, “Supercompact cubic multiwavelets and algorithm with splitting”, 2011 International Conference on Multimedia Technology, 2011, 2636–2639 | MR

[18] B.M. Shumilov, “Cubic multiwavelets orthogonal to polynomials and a splitting algorithm”, Numer. Analysis Appl., 6:3 (2013), 247–259 | DOI | MR | Zbl

[19] A.A. Samarskii, E.S. Nikolaev, Numerical methods for grid equations, v. I, Iterative methods, Birkhauser, Basel, 1989 | MR | Zbl

[20] Z.M. Sulaimanov, B.M. Shumilov, “A splitting algorithm for the wavelet transform of cubic splines on a nonuniform grid”, Comput. Math. Math. Phys., 57:10 (2017), 1577–1591 | DOI | MR | Zbl

[21] G. Strang, T. Nguyen, Wavelets and filter banks, Cambridge Press, Wellesley, 1996 | MR | Zbl

[22] P. Qian, B.A. Francis, “Solution of a wavelet crime”, Topics in control and its applications, A tribute to Edward J. Davison (Toronto, Canada, June 29–30, 1998), eds. D. Miller et al., Springer, London, 1999, 143–156 | DOI | MR | Zbl

[23] W. Rakowski, “Prefiltering in Wavelet Analysis Applying Cubic B-Splines”, International Journal of Electronics and Telecommunications, 60:4 (2014), 331–340 | DOI