Hierarchical basis in $H^{div}$ space for a mixed finite element formulation of the Darcy problem
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1741-1765.

Voir la notice de l'article provenant de la source Math-Net.Ru

A mixed variational formulation based on a discontinuous Galerkin method for solving the Darcy problem with a tensor permeability coefficient is considered. Two special hierarchical basis systems in $H^{div}$ space for velocity and in $H^1$ space for pressure are constructed. The influence of these basis on the properties of the matrix of the discrete analogue is investigated.
Keywords: mixed variational formulation, discontinuous Galerkin method, Darcy problem, algebraic multilevel method.
@article{SEMR_2020_17_a122,
     author = {S. A. Trofimova and N. B. Itkina and \`E. P. Shurina},
     title = {Hierarchical basis in $H^{div}$ space for a mixed finite element formulation of the {Darcy} problem},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1741--1765},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a122/}
}
TY  - JOUR
AU  - S. A. Trofimova
AU  - N. B. Itkina
AU  - È. P. Shurina
TI  - Hierarchical basis in $H^{div}$ space for a mixed finite element formulation of the Darcy problem
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 1741
EP  - 1765
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a122/
LA  - ru
ID  - SEMR_2020_17_a122
ER  - 
%0 Journal Article
%A S. A. Trofimova
%A N. B. Itkina
%A È. P. Shurina
%T Hierarchical basis in $H^{div}$ space for a mixed finite element formulation of the Darcy problem
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 1741-1765
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a122/
%G ru
%F SEMR_2020_17_a122
S. A. Trofimova; N. B. Itkina; È. P. Shurina. Hierarchical basis in $H^{div}$ space for a mixed finite element formulation of the Darcy problem. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1741-1765. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a122/

[1] N.E. Leontiev, Fundamentals of the filtration theory: Study guide, Applied Research Centre Publ., MSU, Faculty of Mechanics and Mathematics, M., 2009

[2] L.S. Leibenzon, Underground hydrodynamics, The Academy of Sciences of the USSR, M., 1953

[3] D.N. Arnold, “Mixed finite element methods for elliptic problems”, Comput. Methods Appl. Mech. Eng., 82:1–3 (1990), 281–300 | DOI | MR | Zbl

[4] F. Brezzi, “On the existence, uniqueness, and approximation of saddle-point problems arising from Lagrangian multipliers”, Analyse numer., Rev. Franc. Automat. Inform. Rech. Operat., 8, no. R-2, 1974, 129–151 | MR | Zbl

[5] D.N. Arnold, F. Brezzi, “Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates”, RAIRO, Modelisation Math. Anal. Numer., 19 (1985), 7–32 | DOI | MR | Zbl

[6] M. Ainsworth, P. Coggins, “The stability of mixed hp-finite element methods for Stokes flow on high aspect ratio elements”, Siam J. Numer. Anal, 38:5 (2000), 1721–1761 | DOI | MR | Zbl

[7] A. Masud, T.J.R. Hughes, “A stabilized mixed finite element method for Darcy flow”, Comput. Methods Appl. Mech. Eng., 191 (2002), 4341–4370 | DOI | MR | Zbl

[8] F. Brezzi, T.J.R. Hughes, L.D. Marini, A. Masud, “Mixed discontinuous Galerkin methods for Darcy flow”, J. Sci. Comput., 22–23 (2005), 119–225 | DOI | MR | Zbl

[9] D.N. Arnold, F. Brezzi, L.D. Marini, “Unified analysis of discontinuous Galerkin methods for elliptic problems”, SIAM J. Numer. Anal., 39:5 (2002), 1749–1779 | DOI | MR | Zbl

[10] G.N. Gatica, R. Ruiz-Baier, G. Tierra, “A mixed finite element method for Darcy`s equations with pressure dependent porosity”, Math. Comp., 85:297 (2016), 1–33 | DOI | MR | Zbl

[11] L. Nouveau, M. Ricchiuto, G. Scovazzi, “High-Order gradients with the shifted boundary method: an embedded enriched mixed formulation for elliptic PDEs”, J. Comput. Phys., 398 (2019), 108898 | DOI | MR

[12] T.P. Barrios, J.M. Cascon, M. Gonzalez, “A posteriori error analysis of a stabilized mixed finite element method for Darcy flow”, Comput. Methods Appl. Mech. Eng., 283 (2015), 909–922 | DOI | MR | Zbl

[13] A. Cesmelioglua, S. Rhebergenb, G.N. Wells, “An embedded-hybridized discontinuous Galerkin method for coupled Stokes-Darcy system”, J. Comput. Appl. Math., 367 (2020), 112476 | DOI | MR | Zbl

[14] E. Chung, S. Pollock, Sai-Mang Pun, “Goal-oriented adaptivity of mixed GMsFEM for flows in heterogeneous media”, Comput. Methods Appl. Mech. Eng., 323 (2017), 151–173 | DOI | MR | Zbl

[15] Y. Amanbek, G. Singh, G. Pencheva, M.F. Wheeler, “Error indicators for incompressible Darcy Flow problems using enhanced velocity mixed finite element method”, Comput. Methods Appl. Mech. Eng., 363 (2020), 112884 | DOI | MR | Zbl

[16] T. Zhang, X. Li, “Meshless analysis of Darcy flow with a variational multiscale interpolating element-free Galerkin method”, Eng. Anal. Bound. Elem., 100 (2019), 237–245 | DOI | MR | Zbl

[17] J.D. Audu, F. Fairag, K. Mustapha, “Mixed finite element analysis for generalized Darcy-Forchheimer model in porous media”, J. Comput. Appl. Math., 353 (2019), 191–203 | DOI | MR | Zbl

[18] R. Li, Z. Sun, F. Yang, Z. Yang, “A finite element method by patch reconstraction for the Stokes problem using mixed formulations”, J. Comput. Appl. Math., 353 (2019), 1–20 | MR | Zbl

[19] A.Y. Chernyshenko, M.A. Olshanskii, “An unfitted finite element method for the Darcy problem in a fracture network”, J. Comput. Appl. Math., 366:2020 (1124), 112424 | MR | Zbl

[20] P.G.S. Carvalho, P.R.B. Devloo, S.M. Gomes, “On the use of divergence balanced H$(div)-L^2$ pair of approximation spaces for divergence-free and robust simulations of Stokes, coupled Stokes-Darcy and Brinkman problems”, Mathematics and Computers in Simulation, 170 (2020), 51–78 | DOI | MR

[21] H.A. van der Vorst, Iterative Krylov methods for large linear systems, Cambridge Monographs on Applied and Computational Mathematics, 13, Cambridge University Press, Cambridge, 2003 | MR | Zbl

[22] F. Brezzi, D. Marini, “A survey on mixed finite element approximations”, IEEE Transactions on Magnetics, 30:5 (1994), 3547–3551 | DOI

[23] P. Solin, K. Segeth, I. Dolezel, High-order finite element methods, CRC Press, Boca Raton, 2004 | MR | Zbl

[24] S. Beuchler, V. Pillwein, S. Zaglmayr, “Sparsity optimized high order finite element functions for H(div) on simplices”, Numer. Math., 122:2 (2012), 197–225 | DOI | MR | Zbl

[25] P.A. Raviart, J.M. Thomas, “A mixed finite element method for 2nd order elliptic problems”, Math. Aspects Finite Elem. Meth., Proc. Conf. (Rome 1975), Lect. Notes Math., 606, 1977, 292–315 | DOI | MR | Zbl

[26] O.A. Ladyzhenskaya, Mathematical questions of the dynamics of a viscous incompressible fluid, Nauka, M., 1970 | MR | Zbl

[27] F. Brezzi, M. Fortin, Mixed and hybrid finite element methods, Springer Series in Computational Mathematics, 15, Springer-Verlag, New York etc., 1991 | DOI | MR | Zbl

[28] J. Kraus, S. Margenov, Robust algebraic multilevel methods and algorithms, Radon Series on Computational and Applied Mathematics, 5, de Gruyter, Berlin, 2009 | MR | Zbl

[29] O. Axelsson, P.S. Vassilevski, “Algebraic multilevel preconditioning methods I”, Numer. Math., 56:2–3 (1989), 157–177 | DOI | MR | Zbl

[30] O. Axelsson, P.S. Vassilevski, “Algebraic multilevel preconditioning methods II”, SIAM J. Numer. Anal., 27:6 (1990), 1569–1590 | DOI | MR | Zbl

[31] S.L. Sobolev, S.M. Nikol'skij, “Embedding theorems”, Am. Math. Soc., Transl., II. Ser., 87 (1970), 147–173 | DOI | Zbl