Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2020_17_a122, author = {S. A. Trofimova and N. B. Itkina and \`E. P. Shurina}, title = {Hierarchical basis in $H^{div}$ space for a mixed finite element formulation of the {Darcy} problem}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1741--1765}, publisher = {mathdoc}, volume = {17}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a122/} }
TY - JOUR AU - S. A. Trofimova AU - N. B. Itkina AU - È. P. Shurina TI - Hierarchical basis in $H^{div}$ space for a mixed finite element formulation of the Darcy problem JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2020 SP - 1741 EP - 1765 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a122/ LA - ru ID - SEMR_2020_17_a122 ER -
%0 Journal Article %A S. A. Trofimova %A N. B. Itkina %A È. P. Shurina %T Hierarchical basis in $H^{div}$ space for a mixed finite element formulation of the Darcy problem %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2020 %P 1741-1765 %V 17 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a122/ %G ru %F SEMR_2020_17_a122
S. A. Trofimova; N. B. Itkina; È. P. Shurina. Hierarchical basis in $H^{div}$ space for a mixed finite element formulation of the Darcy problem. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1741-1765. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a122/
[1] N.E. Leontiev, Fundamentals of the filtration theory: Study guide, Applied Research Centre Publ., MSU, Faculty of Mechanics and Mathematics, M., 2009
[2] L.S. Leibenzon, Underground hydrodynamics, The Academy of Sciences of the USSR, M., 1953
[3] D.N. Arnold, “Mixed finite element methods for elliptic problems”, Comput. Methods Appl. Mech. Eng., 82:1–3 (1990), 281–300 | DOI | MR | Zbl
[4] F. Brezzi, “On the existence, uniqueness, and approximation of saddle-point problems arising from Lagrangian multipliers”, Analyse numer., Rev. Franc. Automat. Inform. Rech. Operat., 8, no. R-2, 1974, 129–151 | MR | Zbl
[5] D.N. Arnold, F. Brezzi, “Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates”, RAIRO, Modelisation Math. Anal. Numer., 19 (1985), 7–32 | DOI | MR | Zbl
[6] M. Ainsworth, P. Coggins, “The stability of mixed hp-finite element methods for Stokes flow on high aspect ratio elements”, Siam J. Numer. Anal, 38:5 (2000), 1721–1761 | DOI | MR | Zbl
[7] A. Masud, T.J.R. Hughes, “A stabilized mixed finite element method for Darcy flow”, Comput. Methods Appl. Mech. Eng., 191 (2002), 4341–4370 | DOI | MR | Zbl
[8] F. Brezzi, T.J.R. Hughes, L.D. Marini, A. Masud, “Mixed discontinuous Galerkin methods for Darcy flow”, J. Sci. Comput., 22–23 (2005), 119–225 | DOI | MR | Zbl
[9] D.N. Arnold, F. Brezzi, L.D. Marini, “Unified analysis of discontinuous Galerkin methods for elliptic problems”, SIAM J. Numer. Anal., 39:5 (2002), 1749–1779 | DOI | MR | Zbl
[10] G.N. Gatica, R. Ruiz-Baier, G. Tierra, “A mixed finite element method for Darcy`s equations with pressure dependent porosity”, Math. Comp., 85:297 (2016), 1–33 | DOI | MR | Zbl
[11] L. Nouveau, M. Ricchiuto, G. Scovazzi, “High-Order gradients with the shifted boundary method: an embedded enriched mixed formulation for elliptic PDEs”, J. Comput. Phys., 398 (2019), 108898 | DOI | MR
[12] T.P. Barrios, J.M. Cascon, M. Gonzalez, “A posteriori error analysis of a stabilized mixed finite element method for Darcy flow”, Comput. Methods Appl. Mech. Eng., 283 (2015), 909–922 | DOI | MR | Zbl
[13] A. Cesmelioglua, S. Rhebergenb, G.N. Wells, “An embedded-hybridized discontinuous Galerkin method for coupled Stokes-Darcy system”, J. Comput. Appl. Math., 367 (2020), 112476 | DOI | MR | Zbl
[14] E. Chung, S. Pollock, Sai-Mang Pun, “Goal-oriented adaptivity of mixed GMsFEM for flows in heterogeneous media”, Comput. Methods Appl. Mech. Eng., 323 (2017), 151–173 | DOI | MR | Zbl
[15] Y. Amanbek, G. Singh, G. Pencheva, M.F. Wheeler, “Error indicators for incompressible Darcy Flow problems using enhanced velocity mixed finite element method”, Comput. Methods Appl. Mech. Eng., 363 (2020), 112884 | DOI | MR | Zbl
[16] T. Zhang, X. Li, “Meshless analysis of Darcy flow with a variational multiscale interpolating element-free Galerkin method”, Eng. Anal. Bound. Elem., 100 (2019), 237–245 | DOI | MR | Zbl
[17] J.D. Audu, F. Fairag, K. Mustapha, “Mixed finite element analysis for generalized Darcy-Forchheimer model in porous media”, J. Comput. Appl. Math., 353 (2019), 191–203 | DOI | MR | Zbl
[18] R. Li, Z. Sun, F. Yang, Z. Yang, “A finite element method by patch reconstraction for the Stokes problem using mixed formulations”, J. Comput. Appl. Math., 353 (2019), 1–20 | MR | Zbl
[19] A.Y. Chernyshenko, M.A. Olshanskii, “An unfitted finite element method for the Darcy problem in a fracture network”, J. Comput. Appl. Math., 366:2020 (1124), 112424 | MR | Zbl
[20] P.G.S. Carvalho, P.R.B. Devloo, S.M. Gomes, “On the use of divergence balanced H$(div)-L^2$ pair of approximation spaces for divergence-free and robust simulations of Stokes, coupled Stokes-Darcy and Brinkman problems”, Mathematics and Computers in Simulation, 170 (2020), 51–78 | DOI | MR
[21] H.A. van der Vorst, Iterative Krylov methods for large linear systems, Cambridge Monographs on Applied and Computational Mathematics, 13, Cambridge University Press, Cambridge, 2003 | MR | Zbl
[22] F. Brezzi, D. Marini, “A survey on mixed finite element approximations”, IEEE Transactions on Magnetics, 30:5 (1994), 3547–3551 | DOI
[23] P. Solin, K. Segeth, I. Dolezel, High-order finite element methods, CRC Press, Boca Raton, 2004 | MR | Zbl
[24] S. Beuchler, V. Pillwein, S. Zaglmayr, “Sparsity optimized high order finite element functions for H(div) on simplices”, Numer. Math., 122:2 (2012), 197–225 | DOI | MR | Zbl
[25] P.A. Raviart, J.M. Thomas, “A mixed finite element method for 2nd order elliptic problems”, Math. Aspects Finite Elem. Meth., Proc. Conf. (Rome 1975), Lect. Notes Math., 606, 1977, 292–315 | DOI | MR | Zbl
[26] O.A. Ladyzhenskaya, Mathematical questions of the dynamics of a viscous incompressible fluid, Nauka, M., 1970 | MR | Zbl
[27] F. Brezzi, M. Fortin, Mixed and hybrid finite element methods, Springer Series in Computational Mathematics, 15, Springer-Verlag, New York etc., 1991 | DOI | MR | Zbl
[28] J. Kraus, S. Margenov, Robust algebraic multilevel methods and algorithms, Radon Series on Computational and Applied Mathematics, 5, de Gruyter, Berlin, 2009 | MR | Zbl
[29] O. Axelsson, P.S. Vassilevski, “Algebraic multilevel preconditioning methods I”, Numer. Math., 56:2–3 (1989), 157–177 | DOI | MR | Zbl
[30] O. Axelsson, P.S. Vassilevski, “Algebraic multilevel preconditioning methods II”, SIAM J. Numer. Anal., 27:6 (1990), 1569–1590 | DOI | MR | Zbl
[31] S.L. Sobolev, S.M. Nikol'skij, “Embedding theorems”, Am. Math. Soc., Transl., II. Ser., 87 (1970), 147–173 | DOI | Zbl