Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2020_17_a121, author = {A. O. Egorshin}, title = {Counter equations: smoothing, filtration, identification}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1322--1351}, publisher = {mathdoc}, volume = {17}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a121/} }
A. O. Egorshin. Counter equations: smoothing, filtration, identification. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1322-1351. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a121/
[1] T. Kailath, “Some new algorithms for recursive estimation in constant linear systems”, IEEE Trans. Inf. Theory, 19:6 (1973), 750–760 | DOI | MR | Zbl
[2] A.O. Egorshin, “Least square method and fast algorithms in variational problems of identification and filtration (VI method)”, Avtometriya, 1 (1988), 30–42
[3] P.Ye. Elyasberg, Definition of the Motion via Measurement Result, URSS, M., 2011
[4] R.C.K. Lee, Optimal Estimation, Identification and Control, MIT Press, Cambridge, 1964 | Zbl
[5] A.O. Egorshin, “On counter orthogonalization processes”, Numer. Analysis Appl., 5:4 (2012), 307–319 | DOI | MR | Zbl
[6] C.F. Gauss, Theoria Motus Corporum Coelestium, Hamburg, 1809
[7] Yu.V. Linnik, Least Square Method and the Foundations of the Theory of Observation Processing, Fizmatgiz, M., 1958 | MR | Zbl
[8] A.O. Egorshin, “Equations of identification methods for linear differential equations”, Mat. Zamet. SVFU, 21:3 (2014), 28–45 | Zbl
[9] A.O. Egorshin, “On one variational smoothing problem”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2011:4 (2011), 9–22 | DOI | Zbl
[10] A.O. Egorshin, “On one variational problem of the piecewise-linear dynamical approximation”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2012:4 (2012), 30–45 | DOI | Zbl
[11] V.A. Ambartsumyan, “On the question of diffuse reflection of light by turbid medium”, Dokl. Akad. Nauk SSSR, 38:8 (1943), 257–261
[12] S. Chandrasekhar, “On radiate equilibrium of stellar atmosphere. XXI–XXII”, Astrophys. J., 106 (1947), 48–72 ; 107:1948, 152–216 | MR
[13] E.A. Robinson, “Spectral approach to geophysical inversion by Lorentz, Fourier, and Radon transforms”, Proc. IEEE, 70:9 (1982), 1039–1054 | DOI
[14] T. Kailath, “Some Chandrasekhar-type algorithms for quadratic regulators”, Proc. IEEE Conference on Detection and Control (New Orleans, LA, Dec 1972), 219–223
[15] R. Redheffer, “On the relation of transmission-line theory to scattering and transfer”, J. Math. Phys., 41 (1962), 1–41 | DOI | MR | Zbl
[16] M.G. Krein, “On a new method for solving linear integral equations of the first and second kinds”, Dokl. Akad. Nauk SSSR, 100:3 (1955), 413–416 | MR | Zbl
[17] N. Levinson, “The Wiener RMS (root-mean-square) error criterion in filter design and prediction”, J. Math. Phys., 25 (1947), 261–278 | DOI | MR
[18] N.I. Akhiezer, The Classical Moment Problem and Some Related Questions in Analysis, Gos. Izd. Fiz.-Mat. Lit., M., 1961 | MR | Zbl
[19] I.C. Gohberg, M.G. Krein, Theory and Applications of Volterra Operators in Hilbert Space, Amer. Math. Soc., 1970 | MR | Zbl
[20] A.O. Egorshin, “On a method for estimating coefficients of simulating equations for sequences”, Sib. Zh. Ind. Mat., 3:2 (2000), 78–96 | MR | Zbl
[21] V.P. Budyanov, A.O. Egorshin, “Signal smoothing and estimation of dynamical parameters in automatic systems using a digital computer”, Avtometriya, 1973:1 (1973), 78–82
[22] A.O. Egorshin, “Closed computational methods of identification of linear objects”, Optimal and Self-Adjusting Systems, Institute of Automation and Electrometry SB RAS, Novosibirsk, 1971, 40–53
[23] F.R. Gantmacher, The Theory of Matrices, Hirsch Chelsea Publishing Co., New York, 1959 | MR
[24] M. Kendall, A. Stuart, The Advanced Theory of Statistics, v. 3, Design and Analysis, and Time-Series, 3rd ed., Charles Griffin and Company Ltd, London–High Wycombe, 1976 | MR | Zbl
[25] Prony Estimation, , 2000 http://www.statsci.org/other/prony.html
[26] A.S. Householder, On Prony's method of fitting exponential decay curves and multiple-hit survival curves, Oak Ridge National Lab. Report ORNL-455, Tennessee, 1950 | MR | Zbl
[27] M.J. Levin, “Estimation of a system pulse transfer function in the presence of noise”, IEEE Trans. Autom. Control, 9:3 (1964), 229–235 | DOI
[28] V.F. Pisarenko, “On the estimation of spectra by means of non-linear functions of the covariance matrix”, Geophys. J.R. Astron. Soc., 28 (1972), 511–531 | DOI | Zbl
[29] G.H. Golub, C.F. Van Loan, “An analysis of the total least squares problem”, SIAM J. Numer. Anal., 17 (1980), 883–893 | DOI | MR | Zbl
[30] B. De Moor, “Structured total least squares and $L_2$ approximation problems”, Linear Algebra Appl., 188–189 (1993), 163–205 | DOI | MR | Zbl
[31] M.R. Osborne, “A class of non-linear regression problems”, Data Represent., Proc. Semin. Aust. nat. Univ., 1969, 1970, 94–101 | Zbl
[32] M. Aoki, P. Yue, “On a priori error estimates of some identification methods”, IEEE Trans. Autom. Control, 15:5 (1970), 541–548 | DOI | MR
[33] A.O. Egorshin, “Optimization of parameters of stationary models in a unitary space”, Autom. Remote Control, 65:12 (2004), 1885–1903 | DOI | MR | Zbl
[34] I.M. Glazman, Yu.I. Lyubich, Finite-Dimensional Linear Analysis in Tasks, Nauka, M., 1969 | MR | Zbl
[35] A.O. Egorshin, “On tracking extremum parameters in the identification variational problem”, J. Math. Sci., 195:6 (2013), 791–804 | DOI | MR