Counter equations: smoothing, filtration, identification
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1322-1351.

Voir la notice de l'article provenant de la source Math-Net.Ru

Inverse problems of analysis, mathematical modeling, and identification of dynamical systems and processes are studied on the base of linear stationary models. The method of analysis is dynamical approximation of signals and functions determined on uniform grids on finite intervals. One class of approximating functions and their models is transition processes of linear difference or differential equations with constant, possibly unknown, coefficients. In the latter case, their estimation (identification) is performed on the basis of the least square method of approximation of observed processes and specified functions. We show that all the considered problems may be effectively solved using computer algorithms based on counter equations of bilateral orthogonalization of homogeneous vector systems, generated by approximating models.
Keywords: counter equations, bilateral orthogonalization, smoothing, piecewise-linear approximation, nonlinear optimization, optimization of subspaces, difference equations, renewal equation, renewal process, homogeneous vector system.
Mots-clés : filtration, identification, estimation, matrix inversion, Riccati matrix equation
@article{SEMR_2020_17_a121,
     author = {A. O. Egorshin},
     title = {Counter equations: smoothing, filtration, identification},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1322--1351},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a121/}
}
TY  - JOUR
AU  - A. O. Egorshin
TI  - Counter equations: smoothing, filtration, identification
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 1322
EP  - 1351
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a121/
LA  - en
ID  - SEMR_2020_17_a121
ER  - 
%0 Journal Article
%A A. O. Egorshin
%T Counter equations: smoothing, filtration, identification
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 1322-1351
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a121/
%G en
%F SEMR_2020_17_a121
A. O. Egorshin. Counter equations: smoothing, filtration, identification. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1322-1351. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a121/

[1] T. Kailath, “Some new algorithms for recursive estimation in constant linear systems”, IEEE Trans. Inf. Theory, 19:6 (1973), 750–760 | DOI | MR | Zbl

[2] A.O. Egorshin, “Least square method and fast algorithms in variational problems of identification and filtration (VI method)”, Avtometriya, 1 (1988), 30–42

[3] P.Ye. Elyasberg, Definition of the Motion via Measurement Result, URSS, M., 2011

[4] R.C.K. Lee, Optimal Estimation, Identification and Control, MIT Press, Cambridge, 1964 | Zbl

[5] A.O. Egorshin, “On counter orthogonalization processes”, Numer. Analysis Appl., 5:4 (2012), 307–319 | DOI | MR | Zbl

[6] C.F. Gauss, Theoria Motus Corporum Coelestium, Hamburg, 1809

[7] Yu.V. Linnik, Least Square Method and the Foundations of the Theory of Observation Processing, Fizmatgiz, M., 1958 | MR | Zbl

[8] A.O. Egorshin, “Equations of identification methods for linear differential equations”, Mat. Zamet. SVFU, 21:3 (2014), 28–45 | Zbl

[9] A.O. Egorshin, “On one variational smoothing problem”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2011:4 (2011), 9–22 | DOI | Zbl

[10] A.O. Egorshin, “On one variational problem of the piecewise-linear dynamical approximation”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2012:4 (2012), 30–45 | DOI | Zbl

[11] V.A. Ambartsumyan, “On the question of diffuse reflection of light by turbid medium”, Dokl. Akad. Nauk SSSR, 38:8 (1943), 257–261

[12] S. Chandrasekhar, “On radiate equilibrium of stellar atmosphere. XXI–XXII”, Astrophys. J., 106 (1947), 48–72 ; 107:1948, 152–216 | MR

[13] E.A. Robinson, “Spectral approach to geophysical inversion by Lorentz, Fourier, and Radon transforms”, Proc. IEEE, 70:9 (1982), 1039–1054 | DOI

[14] T. Kailath, “Some Chandrasekhar-type algorithms for quadratic regulators”, Proc. IEEE Conference on Detection and Control (New Orleans, LA, Dec 1972), 219–223

[15] R. Redheffer, “On the relation of transmission-line theory to scattering and transfer”, J. Math. Phys., 41 (1962), 1–41 | DOI | MR | Zbl

[16] M.G. Krein, “On a new method for solving linear integral equations of the first and second kinds”, Dokl. Akad. Nauk SSSR, 100:3 (1955), 413–416 | MR | Zbl

[17] N. Levinson, “The Wiener RMS (root-mean-square) error criterion in filter design and prediction”, J. Math. Phys., 25 (1947), 261–278 | DOI | MR

[18] N.I. Akhiezer, The Classical Moment Problem and Some Related Questions in Analysis, Gos. Izd. Fiz.-Mat. Lit., M., 1961 | MR | Zbl

[19] I.C. Gohberg, M.G. Krein, Theory and Applications of Volterra Operators in Hilbert Space, Amer. Math. Soc., 1970 | MR | Zbl

[20] A.O. Egorshin, “On a method for estimating coefficients of simulating equations for sequences”, Sib. Zh. Ind. Mat., 3:2 (2000), 78–96 | MR | Zbl

[21] V.P. Budyanov, A.O. Egorshin, “Signal smoothing and estimation of dynamical parameters in automatic systems using a digital computer”, Avtometriya, 1973:1 (1973), 78–82

[22] A.O. Egorshin, “Closed computational methods of identification of linear objects”, Optimal and Self-Adjusting Systems, Institute of Automation and Electrometry SB RAS, Novosibirsk, 1971, 40–53

[23] F.R. Gantmacher, The Theory of Matrices, Hirsch Chelsea Publishing Co., New York, 1959 | MR

[24] M. Kendall, A. Stuart, The Advanced Theory of Statistics, v. 3, Design and Analysis, and Time-Series, 3rd ed., Charles Griffin and Company Ltd, London–High Wycombe, 1976 | MR | Zbl

[25] Prony Estimation, , 2000 http://www.statsci.org/other/prony.html

[26] A.S. Householder, On Prony's method of fitting exponential decay curves and multiple-hit survival curves, Oak Ridge National Lab. Report ORNL-455, Tennessee, 1950 | MR | Zbl

[27] M.J. Levin, “Estimation of a system pulse transfer function in the presence of noise”, IEEE Trans. Autom. Control, 9:3 (1964), 229–235 | DOI

[28] V.F. Pisarenko, “On the estimation of spectra by means of non-linear functions of the covariance matrix”, Geophys. J.R. Astron. Soc., 28 (1972), 511–531 | DOI | Zbl

[29] G.H. Golub, C.F. Van Loan, “An analysis of the total least squares problem”, SIAM J. Numer. Anal., 17 (1980), 883–893 | DOI | MR | Zbl

[30] B. De Moor, “Structured total least squares and $L_2$ approximation problems”, Linear Algebra Appl., 188–189 (1993), 163–205 | DOI | MR | Zbl

[31] M.R. Osborne, “A class of non-linear regression problems”, Data Represent., Proc. Semin. Aust. nat. Univ., 1969, 1970, 94–101 | Zbl

[32] M. Aoki, P. Yue, “On a priori error estimates of some identification methods”, IEEE Trans. Autom. Control, 15:5 (1970), 541–548 | DOI | MR

[33] A.O. Egorshin, “Optimization of parameters of stationary models in a unitary space”, Autom. Remote Control, 65:12 (2004), 1885–1903 | DOI | MR | Zbl

[34] I.M. Glazman, Yu.I. Lyubich, Finite-Dimensional Linear Analysis in Tasks, Nauka, M., 1969 | MR | Zbl

[35] A.O. Egorshin, “On tracking extremum parameters in the identification variational problem”, J. Math. Sci., 195:6 (2013), 791–804 | DOI | MR