The method of approximate inverse for the Radon transform operator acting on functions and for the normal Radon transform operators acting on vector and symmetric $2$-tensor fields in $\mathbb{R}^3$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1073-1087

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose approach for reconstruction of a three-dimensional function from the known values of Radon transform. The approach is based on the method of approximate inverse. The obtained result is the basis of two approaches for reconstruction of a potential part of vector and symmetric $2$-tensor fields, which have form $\mathrm{d}\psi$, $\psi\in H^1_0(B)$ and $\mathrm{d}^2\psi$, $\psi\in H^2_0(B)$, respectively. Here $\mathrm{d}$ is the inner derivation operator, which is a composition of the operators of gradient and symmetrization. Initial data for the problems are the known values of normal Radon transform. The first approach allows to recover components of potential part of fields, and the second reconstructs a potential of potential part of fields.
Keywords: tensor tomography, method of approximate inverse, adjoint operator, vector field, symmetric $2$-tensor field, potential field, potential.
Mots-clés : Radon transform, normal Radon transform
@article{SEMR_2020_17_a120,
     author = {I. E. Svetov},
     title = {The method of approximate inverse for the {Radon} transform operator acting on functions and for the normal {Radon} transform operators acting on vector and symmetric $2$-tensor fields in $\mathbb{R}^3$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1073--1087},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a120/}
}
TY  - JOUR
AU  - I. E. Svetov
TI  - The method of approximate inverse for the Radon transform operator acting on functions and for the normal Radon transform operators acting on vector and symmetric $2$-tensor fields in $\mathbb{R}^3$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 1073
EP  - 1087
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a120/
LA  - ru
ID  - SEMR_2020_17_a120
ER  - 
%0 Journal Article
%A I. E. Svetov
%T The method of approximate inverse for the Radon transform operator acting on functions and for the normal Radon transform operators acting on vector and symmetric $2$-tensor fields in $\mathbb{R}^3$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 1073-1087
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a120/
%G ru
%F SEMR_2020_17_a120
I. E. Svetov. The method of approximate inverse for the Radon transform operator acting on functions and for the normal Radon transform operators acting on vector and symmetric $2$-tensor fields in $\mathbb{R}^3$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1073-1087. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a120/