Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2020_17_a120, author = {I. E. Svetov}, title = {The method of approximate inverse for the {Radon} transform operator acting on functions and for the normal {Radon} transform operators acting on vector and symmetric $2$-tensor fields in $\mathbb{R}^3$}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1073--1087}, publisher = {mathdoc}, volume = {17}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a120/} }
TY - JOUR AU - I. E. Svetov TI - The method of approximate inverse for the Radon transform operator acting on functions and for the normal Radon transform operators acting on vector and symmetric $2$-tensor fields in $\mathbb{R}^3$ JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2020 SP - 1073 EP - 1087 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a120/ LA - ru ID - SEMR_2020_17_a120 ER -
%0 Journal Article %A I. E. Svetov %T The method of approximate inverse for the Radon transform operator acting on functions and for the normal Radon transform operators acting on vector and symmetric $2$-tensor fields in $\mathbb{R}^3$ %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2020 %P 1073-1087 %V 17 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a120/ %G ru %F SEMR_2020_17_a120
I. E. Svetov. The method of approximate inverse for the Radon transform operator acting on functions and for the normal Radon transform operators acting on vector and symmetric $2$-tensor fields in $\mathbb{R}^3$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1073-1087. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a120/
[1] S. Deans, The Radon transform and some of its applications, Wiley, New York, 1983 | MR | Zbl
[2] F. Natterer, The Mathematics of Computerized Tomography, John Wiley Sons Ltd, Stuttgart, 1986 | MR | Zbl
[3] V.A. Sharafutdinov, Integral Geometry of Tensor Fields, VSP, Utrecht, 1994 | MR | Zbl
[4] A. Denisjuk, “Inversion of the X-ray transform for $3D$ symmetric tensor fields with sources on a curve”, Inverse Probl., 22:2 (2006), 399–411 | DOI | MR | Zbl
[5] V. Sharafutdinov, “Slice-by-slice reconstruction algorithm for vector tomography with incomplete data”, Inverse Probl., 23:6 (2007), 2603–2627 | DOI | MR | Zbl
[6] I.E. Svetov, “Reconstruction of the solenoidal part of a three-dimensional vector field by its ray transforms along straight lines parallel to coordinate planes”, Numer. Analysis Appl., 5:3 (2012), 271–283 | DOI | Zbl
[7] I. Svetov, “Slice-by-slice numerical solution of $3D$-vector tomography problem”, Journal of Physics: Conference Series, 410 (2013), 012042 | DOI
[8] J.L. Prince, “Tomographic reconstruction of $3D$ vector fields using inner product probes”, IEEE Transactions on Image Processing, 3:2, 216–219 | DOI | MR
[9] N.F. Osman, J.L. Prince, “$3D$ vector tomography on bounded domains”, Inverse Probl., 14:1 (1998), 185–196 | DOI | MR | Zbl
[10] M. Defrise, G.T. Gullberg, $3D$ reconstruction of tensors and vectors, Technical Report No LBNL-54936, LBNL, Berkeley, 2005
[11] A.K. Louis, “Orthogonal function series expansions and the null space of the Radon transform”, SIAM J. Math. Anal., 15:3 (1984), 621–633 | DOI | MR | Zbl
[12] P. Maass, “The X-ray transform: Singular value decomposition and resolution”, Inverse Probl., 3:4 (1987), 729–741 | DOI | MR | Zbl
[13] A. Polyakova, “Reconstruction of potential part of $3D$ vector field by using singular value decomposition”, Journal of Physics: Conference Series, 410 (2013), 012015 | DOI
[14] A.P. Polyakova, “Reconstruction of a vector field in a ball from its normal Radon transform”, J. Math. Sci., 205:3 (2015), 418–439 | DOI | MR | Zbl
[15] A.P. Polyakova, I.E. Svetov, “Numerical Solution of the Problem of Reconstructing a Potential Vector Field in the Unit Ball from Its Normal Radon Transform”, J. Appl. Ind. Math., 9:4 (2015), 547–558 | DOI | MR | Zbl
[16] A.P. Polyakova, I.E. Svetov, “Numerical solution of reconstruction problem of a potential symmetric 2-tensor field in a ball from its normal Radon transform”, Sib. Elektron. Mat. Izv., 13 (2016), 154–174 | MR | Zbl
[17] A.K. Louis, P. Maass, “A mollifier method for linear operator equations of the first kind”, Inverse Probl., 6:3 (1990), 427–440 | DOI | MR | Zbl
[18] A.K. Louis, “Approximate inverse for linear and some nonlinear problems”, Inverse Probl., 12:2 (1996), 175–190 | DOI | MR | Zbl
[19] T. Schuster, The Method of Approximate Inverse: Theory and Applications, Lecture Notes in Mathematics, 1906, Springer, Berlin, 2007 | DOI | MR | Zbl
[20] A.K. Louis, T. Schuster, “A novel filter design technique in $2D$ computerized tomography”, Inverse Probl., 12:5 (1996), 685–696 | DOI | MR | Zbl
[21] A. Rieder, T. Schuster, “The Approximate Inverse in Action with an Application to Computerized Tomography”, SIAM J. Numer. Anal., 37:6 (2000), 1909–1929 | DOI | MR | Zbl
[22] E.Yu. Derevtsov, R. Dietz, A.K. Louis, T. Schuster, “Influence of refraction to the accuracy of a solution for the $2D$-emission tomography problem”, J. Inverse Ill-Posed Probl., 8:2 (2000), 161–191 | DOI | MR | Zbl
[23] A. Rieder, T. Schuser, “The Approximate Inverse in Action III: $3D$-Doppler tomography”, Numer. Math., 97:2 (2004), 353–378 | DOI | MR | Zbl
[24] T. Schuser, “Defect correction in vector field tomography: detecting the potential part of a field using BEM and implementation of the method”, Inverse Probl., 21:1 (2005), 75–91 | DOI | MR | Zbl
[25] I.E. Svetov, S.V. Maltseva, A.P. Polyakova, “Approximate inversion of operators of two-dimensional vector tomography”, Sib. Elektron. Mat. Izv., 13 (2016), 607–623 | MR | Zbl
[26] I.E. Svetov, S.V. Maltseva, A.P. Polyakova, “Numerical solution of $2D$-vector tomography problem using the method of approximate inverse”, AIP Conference Proceedings, 1759 (2016), 020132 | DOI
[27] I.E. Svetov, S.V. Maltseva, A.K. Louis, “The method of approximate inverse in slice-by-slice vector tomography problems”, Lecture Notes in Computer Science, 11974, 2020, 487–494 | DOI | Zbl
[28] E.Yu. Derevtsov, A.K. Louis, S.V. Maltseva, A.P. Polyakova, I.E. Svetov, “Numerical solvers based on the method of approximate inverse for $2D$ vector and 2-tensor tomography problems”, Inverse Probl., 33:12 (2017), 124001 | DOI | MR | Zbl
[29] I.E. Svetov, A.P. Polyakova, S.V. Maltseva, “Method of Approximate Inverse for the Ray Transform Operators Acting on Two-Dimensional Symmetric $m$-Tensor Fields”, J. Appl. Ind. Math., 13:1 (2019), 157–167 | DOI | MR | Zbl
[30] N. Weyl, “The method of ortogonal projection in potential theory”, Duke Math. J., 7 (1940), 411–444 | DOI | MR | Zbl
[31] N.E. Kochin, Vector calculus and the beginnings of tensor calculus, Izdatelstvo AS USSR, M., 1951 | MR | Zbl
[32] E.B. Bykhovskii, N.V. Smirnov, “On the orthogonal decomposition of the space of vector-functions quadratically summable over a given domain and on the vector analysis operators”, Tr. Mat. Inst. Steklova, 59, 1960, 5–36 | MR | Zbl
[33] V. Girault, P.A. Raviart, Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms, Springer-Verlag, Berlin, 1986 | MR | Zbl
[34] W. Borchers, H. Sohr, “On the equations $\mathrm{rot} v = g$ and $\mathrm{div}u = f$ with zero boundary conditions”, Hokkaido Math. J., 19:1 (1990), 67–87 | DOI | MR | Zbl
[35] I.E. Svetov, “Inversion formulas for recovering the harmonic 2D-vector field by known ray transforms”, Sib. Elektron. Mat. Izv., 12 (2015), 436–446 | MR | Zbl
[36] M. Abramowitz, I. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, 10th printing, with corrections, Dover, New York, 1972 | MR | Zbl
[37] I. Sneddon, Fourier Transforms, McGraw-Hill, New York, 1950 | MR | Zbl
[38] H. Bateman, A. Erdelyi, Tables of Integral Transforms, v. 1, McGraw-Hill, New York, 1954 | MR | Zbl