Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2020_17_a120, author = {I. E. Svetov}, title = {The method of approximate inverse for the {Radon} transform operator acting on functions and for the normal {Radon} transform operators acting on vector and symmetric $2$-tensor fields in $\mathbb{R}^3$}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1073--1087}, publisher = {mathdoc}, volume = {17}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a120/} }
TY - JOUR AU - I. E. Svetov TI - The method of approximate inverse for the Radon transform operator acting on functions and for the normal Radon transform operators acting on vector and symmetric $2$-tensor fields in $\mathbb{R}^3$ JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2020 SP - 1073 EP - 1087 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a120/ LA - ru ID - SEMR_2020_17_a120 ER -
%0 Journal Article %A I. E. Svetov %T The method of approximate inverse for the Radon transform operator acting on functions and for the normal Radon transform operators acting on vector and symmetric $2$-tensor fields in $\mathbb{R}^3$ %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2020 %P 1073-1087 %V 17 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a120/ %G ru %F SEMR_2020_17_a120
I. E. Svetov. The method of approximate inverse for the Radon transform operator acting on functions and for the normal Radon transform operators acting on vector and symmetric $2$-tensor fields in $\mathbb{R}^3$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1073-1087. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a120/