The method of approximate inverse for the Radon transform operator acting on functions and for the normal Radon transform operators acting on vector and symmetric $2$-tensor fields in $\mathbb{R}^3$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1073-1087.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose approach for reconstruction of a three-dimensional function from the known values of Radon transform. The approach is based on the method of approximate inverse. The obtained result is the basis of two approaches for reconstruction of a potential part of vector and symmetric $2$-tensor fields, which have form $\mathrm{d}\psi$, $\psi\in H^1_0(B)$ and $\mathrm{d}^2\psi$, $\psi\in H^2_0(B)$, respectively. Here $\mathrm{d}$ is the inner derivation operator, which is a composition of the operators of gradient and symmetrization. Initial data for the problems are the known values of normal Radon transform. The first approach allows to recover components of potential part of fields, and the second reconstructs a potential of potential part of fields.
Keywords: tensor tomography, method of approximate inverse, adjoint operator, vector field, symmetric $2$-tensor field, potential field, potential.
Mots-clés : Radon transform, normal Radon transform
@article{SEMR_2020_17_a120,
     author = {I. E. Svetov},
     title = {The method of approximate inverse for the {Radon} transform operator acting on functions and for the normal {Radon} transform operators acting on vector and symmetric $2$-tensor fields in $\mathbb{R}^3$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1073--1087},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a120/}
}
TY  - JOUR
AU  - I. E. Svetov
TI  - The method of approximate inverse for the Radon transform operator acting on functions and for the normal Radon transform operators acting on vector and symmetric $2$-tensor fields in $\mathbb{R}^3$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 1073
EP  - 1087
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a120/
LA  - ru
ID  - SEMR_2020_17_a120
ER  - 
%0 Journal Article
%A I. E. Svetov
%T The method of approximate inverse for the Radon transform operator acting on functions and for the normal Radon transform operators acting on vector and symmetric $2$-tensor fields in $\mathbb{R}^3$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 1073-1087
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a120/
%G ru
%F SEMR_2020_17_a120
I. E. Svetov. The method of approximate inverse for the Radon transform operator acting on functions and for the normal Radon transform operators acting on vector and symmetric $2$-tensor fields in $\mathbb{R}^3$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1073-1087. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a120/

[1] S. Deans, The Radon transform and some of its applications, Wiley, New York, 1983 | MR | Zbl

[2] F. Natterer, The Mathematics of Computerized Tomography, John Wiley Sons Ltd, Stuttgart, 1986 | MR | Zbl

[3] V.A. Sharafutdinov, Integral Geometry of Tensor Fields, VSP, Utrecht, 1994 | MR | Zbl

[4] A. Denisjuk, “Inversion of the X-ray transform for $3D$ symmetric tensor fields with sources on a curve”, Inverse Probl., 22:2 (2006), 399–411 | DOI | MR | Zbl

[5] V. Sharafutdinov, “Slice-by-slice reconstruction algorithm for vector tomography with incomplete data”, Inverse Probl., 23:6 (2007), 2603–2627 | DOI | MR | Zbl

[6] I.E. Svetov, “Reconstruction of the solenoidal part of a three-dimensional vector field by its ray transforms along straight lines parallel to coordinate planes”, Numer. Analysis Appl., 5:3 (2012), 271–283 | DOI | Zbl

[7] I. Svetov, “Slice-by-slice numerical solution of $3D$-vector tomography problem”, Journal of Physics: Conference Series, 410 (2013), 012042 | DOI

[8] J.L. Prince, “Tomographic reconstruction of $3D$ vector fields using inner product probes”, IEEE Transactions on Image Processing, 3:2, 216–219 | DOI | MR

[9] N.F. Osman, J.L. Prince, “$3D$ vector tomography on bounded domains”, Inverse Probl., 14:1 (1998), 185–196 | DOI | MR | Zbl

[10] M. Defrise, G.T. Gullberg, $3D$ reconstruction of tensors and vectors, Technical Report No LBNL-54936, LBNL, Berkeley, 2005

[11] A.K. Louis, “Orthogonal function series expansions and the null space of the Radon transform”, SIAM J. Math. Anal., 15:3 (1984), 621–633 | DOI | MR | Zbl

[12] P. Maass, “The X-ray transform: Singular value decomposition and resolution”, Inverse Probl., 3:4 (1987), 729–741 | DOI | MR | Zbl

[13] A. Polyakova, “Reconstruction of potential part of $3D$ vector field by using singular value decomposition”, Journal of Physics: Conference Series, 410 (2013), 012015 | DOI

[14] A.P. Polyakova, “Reconstruction of a vector field in a ball from its normal Radon transform”, J. Math. Sci., 205:3 (2015), 418–439 | DOI | MR | Zbl

[15] A.P. Polyakova, I.E. Svetov, “Numerical Solution of the Problem of Reconstructing a Potential Vector Field in the Unit Ball from Its Normal Radon Transform”, J. Appl. Ind. Math., 9:4 (2015), 547–558 | DOI | MR | Zbl

[16] A.P. Polyakova, I.E. Svetov, “Numerical solution of reconstruction problem of a potential symmetric 2-tensor field in a ball from its normal Radon transform”, Sib. Elektron. Mat. Izv., 13 (2016), 154–174 | MR | Zbl

[17] A.K. Louis, P. Maass, “A mollifier method for linear operator equations of the first kind”, Inverse Probl., 6:3 (1990), 427–440 | DOI | MR | Zbl

[18] A.K. Louis, “Approximate inverse for linear and some nonlinear problems”, Inverse Probl., 12:2 (1996), 175–190 | DOI | MR | Zbl

[19] T. Schuster, The Method of Approximate Inverse: Theory and Applications, Lecture Notes in Mathematics, 1906, Springer, Berlin, 2007 | DOI | MR | Zbl

[20] A.K. Louis, T. Schuster, “A novel filter design technique in $2D$ computerized tomography”, Inverse Probl., 12:5 (1996), 685–696 | DOI | MR | Zbl

[21] A. Rieder, T. Schuster, “The Approximate Inverse in Action with an Application to Computerized Tomography”, SIAM J. Numer. Anal., 37:6 (2000), 1909–1929 | DOI | MR | Zbl

[22] E.Yu. Derevtsov, R. Dietz, A.K. Louis, T. Schuster, “Influence of refraction to the accuracy of a solution for the $2D$-emission tomography problem”, J. Inverse Ill-Posed Probl., 8:2 (2000), 161–191 | DOI | MR | Zbl

[23] A. Rieder, T. Schuser, “The Approximate Inverse in Action III: $3D$-Doppler tomography”, Numer. Math., 97:2 (2004), 353–378 | DOI | MR | Zbl

[24] T. Schuser, “Defect correction in vector field tomography: detecting the potential part of a field using BEM and implementation of the method”, Inverse Probl., 21:1 (2005), 75–91 | DOI | MR | Zbl

[25] I.E. Svetov, S.V. Maltseva, A.P. Polyakova, “Approximate inversion of operators of two-dimensional vector tomography”, Sib. Elektron. Mat. Izv., 13 (2016), 607–623 | MR | Zbl

[26] I.E. Svetov, S.V. Maltseva, A.P. Polyakova, “Numerical solution of $2D$-vector tomography problem using the method of approximate inverse”, AIP Conference Proceedings, 1759 (2016), 020132 | DOI

[27] I.E. Svetov, S.V. Maltseva, A.K. Louis, “The method of approximate inverse in slice-by-slice vector tomography problems”, Lecture Notes in Computer Science, 11974, 2020, 487–494 | DOI | Zbl

[28] E.Yu. Derevtsov, A.K. Louis, S.V. Maltseva, A.P. Polyakova, I.E. Svetov, “Numerical solvers based on the method of approximate inverse for $2D$ vector and 2-tensor tomography problems”, Inverse Probl., 33:12 (2017), 124001 | DOI | MR | Zbl

[29] I.E. Svetov, A.P. Polyakova, S.V. Maltseva, “Method of Approximate Inverse for the Ray Transform Operators Acting on Two-Dimensional Symmetric $m$-Tensor Fields”, J. Appl. Ind. Math., 13:1 (2019), 157–167 | DOI | MR | Zbl

[30] N. Weyl, “The method of ortogonal projection in potential theory”, Duke Math. J., 7 (1940), 411–444 | DOI | MR | Zbl

[31] N.E. Kochin, Vector calculus and the beginnings of tensor calculus, Izdatelstvo AS USSR, M., 1951 | MR | Zbl

[32] E.B. Bykhovskii, N.V. Smirnov, “On the orthogonal decomposition of the space of vector-functions quadratically summable over a given domain and on the vector analysis operators”, Tr. Mat. Inst. Steklova, 59, 1960, 5–36 | MR | Zbl

[33] V. Girault, P.A. Raviart, Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms, Springer-Verlag, Berlin, 1986 | MR | Zbl

[34] W. Borchers, H. Sohr, “On the equations $\mathrm{rot} v = g$ and $\mathrm{div}u = f$ with zero boundary conditions”, Hokkaido Math. J., 19:1 (1990), 67–87 | DOI | MR | Zbl

[35] I.E. Svetov, “Inversion formulas for recovering the harmonic 2D-vector field by known ray transforms”, Sib. Elektron. Mat. Izv., 12 (2015), 436–446 | MR | Zbl

[36] M. Abramowitz, I. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, 10th printing, with corrections, Dover, New York, 1972 | MR | Zbl

[37] I. Sneddon, Fourier Transforms, McGraw-Hill, New York, 1950 | MR | Zbl

[38] H. Bateman, A. Erdelyi, Tables of Integral Transforms, v. 1, McGraw-Hill, New York, 1954 | MR | Zbl