Approximations of theories
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 715-725.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study approximations of theories both in general context and with respect to some natural classes of theories. Some kinds of approximations are considered, connections with finitely axiomatizable theories and minimal generating sets of theories as well as their $e$-spectra are found. $e$-categorical approximating families are introduced and characterized.
Keywords: approximation of theory, combination of structures, closure, finitely axiomatizable theory, $e$-spectrum.
@article{SEMR_2020_17_a12,
     author = {S. V. Sudoplatov},
     title = {Approximations of theories},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {715--725},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a12/}
}
TY  - JOUR
AU  - S. V. Sudoplatov
TI  - Approximations of theories
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 715
EP  - 725
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a12/
LA  - ru
ID  - SEMR_2020_17_a12
ER  - 
%0 Journal Article
%A S. V. Sudoplatov
%T Approximations of theories
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 715-725
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a12/
%G ru
%F SEMR_2020_17_a12
S. V. Sudoplatov. Approximations of theories. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 715-725. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a12/

[1] P. Bankston, “Ulptraproducts in topology”, General Topology and its Applications, 7:3 (1977), 283–308 | MR | Zbl

[2] P. Bankston, “A survey of ultraproduct constructions in general topology”, Topology Atlas Invited Contributions, 8:2 (2003), 1–32

[3] G. Cherlin, L. Harrington, A.H. Lachlan, “$\aleph_0$-categorical, $\aleph_0$-stable structures”, Ann. Pure Appl. Logic, 28:2 (1985), 103–135 | DOI | MR | Zbl

[4] G. Cherlin, A.H. Lachlan, “Stable finitely homogeneous structures”, Trans. Amer. Math. Soc., 296:2 (1986), 815–850 | DOI | MR | Zbl

[5] G. Ahlbrandt, M. Ziegler, “Quasi finitely axiomatizable totally categorical theories”, Annals of Pure and Applied Logic, 30:1 (1986), 63–82 | DOI | MR | Zbl

[6] E. Rosen, “Some Aspects of Model Theory and Finite Structures”, The Bulletin of Symbolic Logic, 8:3 (2002), 380–403 | DOI | MR | Zbl

[7] J. Väänänen, “Pseudo-finite model theory”, Mat. Contemp., 24 (2003), 169–183 | MR | Zbl

[8] G. Cherlin, E. Hrushovski, Finite Structures with Few Types, Annals of Mathematics Studies, 152, Princeton University Press, Princeton, 2003 | MR | Zbl

[9] D. Macpherson, Ch. Steinhorn, “Definability in the classes of finite structures”, London Matheematical Society Lecture Notes series, 379, 2011, 140–176 | MR | Zbl

[10] U. Andrews, H. J. Keisler, “Separable models of randomizations”, J. Symb. Log., 80:4 (2015), 1149–1181 | DOI | MR | Zbl

[11] S.V. Sudoplatov, “Combinations of structures”, Izv. Irkutsk. Gos. Univ., Ser. Mat., 24 (2018), 65–84 | MR | Zbl

[12] S.V. Sudoplatov, “Closures and generating sets related to combinations of structures”, Izv. Irkutsk. Gos. Univ., Ser. Mat., 16 (2016), 131–144 | MR | Zbl

[13] S. V. Sudoplatov, S.V. Sudoplatov, “Families of language uniform theories and their generating sets”, Izv. Irkutsk. Gos. Univ., Ser. Mat., 16 (2016), 62–76 | MR | Zbl

[14] S.V. Sudoplatov, “Combinations related to classes of finite and countably categorical structures and their theories”, Sib. Electron. Mat. Izv., 14 (2017), 135–150 | MR | Zbl

[15] S.V. Sudoplatov, “Relative $e$-spectra and relative closures for families of theories”, Sib. Elektron. Mat. Izv., 14 (2017), 296–307 | MR | Zbl

[16] S.V. Sudoplatov, “On semilattices and lattices for families of theories”, Sib. Elektron. Mat. Izv., 14 (2017), 980–985 | MR | Zbl

[17] A. Ehrenfeucht, G. Fuhrken, “A finitely axiomatizable complete theory with atomless $F_1(T)$”, Arch. Math. Logik, 14:3–4 (1971), 162–166 | DOI | MR | Zbl

[18] E.A. Palyutin, “Models with countable-categorical universal theories”, Algebra Logika, 10 (1971), 23–32 | MR | Zbl

[19] J.A. Makowsky, “On some conjecture connected with complete sentences”, Fund. Math., 81:3 (1974), 193–202 | DOI | MR | Zbl

[20] E.A. Palyutin, “Categorical Horn classes. I”, Algebra Logic, 19:5 (1980), 377–400 | DOI | MR | Zbl

[21] B.I. Zilber, “On a solution of the problem of finite axiomatizability for theories categorical in all infinite powers”, Transl., II. Ser., Am. Math. Soc., 135 (1987), 13–17 | DOI | Zbl

[22] E. Hrushovski, “Finitely Axiomatizable $\aleph_1$ Categorical Theories”, J. Symbolic Logic, 59:3 (1994), 838–844 | DOI | MR | Zbl

[23] M.G. Peretyatkin, Finitely Axiomatizable Theories, Plenum Publ. Corp, New York, 1997 | MR | Zbl

[24] T. Blossier, E. Bouscaren, “Finitely Axiomatizable Strongly Minimal Groups”, J. Symb. Log., 75:1 (2010), 25–50 | DOI | MR | Zbl

[25] S.V. Sudoplatov, Classification of Countable Models of Complete Theories, NSTU, Novosibirsk, 2018