Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2020_17_a12, author = {S. V. Sudoplatov}, title = {Approximations of theories}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {715--725}, publisher = {mathdoc}, volume = {17}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a12/} }
S. V. Sudoplatov. Approximations of theories. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 715-725. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a12/
[1] P. Bankston, “Ulptraproducts in topology”, General Topology and its Applications, 7:3 (1977), 283–308 | MR | Zbl
[2] P. Bankston, “A survey of ultraproduct constructions in general topology”, Topology Atlas Invited Contributions, 8:2 (2003), 1–32
[3] G. Cherlin, L. Harrington, A.H. Lachlan, “$\aleph_0$-categorical, $\aleph_0$-stable structures”, Ann. Pure Appl. Logic, 28:2 (1985), 103–135 | DOI | MR | Zbl
[4] G. Cherlin, A.H. Lachlan, “Stable finitely homogeneous structures”, Trans. Amer. Math. Soc., 296:2 (1986), 815–850 | DOI | MR | Zbl
[5] G. Ahlbrandt, M. Ziegler, “Quasi finitely axiomatizable totally categorical theories”, Annals of Pure and Applied Logic, 30:1 (1986), 63–82 | DOI | MR | Zbl
[6] E. Rosen, “Some Aspects of Model Theory and Finite Structures”, The Bulletin of Symbolic Logic, 8:3 (2002), 380–403 | DOI | MR | Zbl
[7] J. Väänänen, “Pseudo-finite model theory”, Mat. Contemp., 24 (2003), 169–183 | MR | Zbl
[8] G. Cherlin, E. Hrushovski, Finite Structures with Few Types, Annals of Mathematics Studies, 152, Princeton University Press, Princeton, 2003 | MR | Zbl
[9] D. Macpherson, Ch. Steinhorn, “Definability in the classes of finite structures”, London Matheematical Society Lecture Notes series, 379, 2011, 140–176 | MR | Zbl
[10] U. Andrews, H. J. Keisler, “Separable models of randomizations”, J. Symb. Log., 80:4 (2015), 1149–1181 | DOI | MR | Zbl
[11] S.V. Sudoplatov, “Combinations of structures”, Izv. Irkutsk. Gos. Univ., Ser. Mat., 24 (2018), 65–84 | MR | Zbl
[12] S.V. Sudoplatov, “Closures and generating sets related to combinations of structures”, Izv. Irkutsk. Gos. Univ., Ser. Mat., 16 (2016), 131–144 | MR | Zbl
[13] S. V. Sudoplatov, S.V. Sudoplatov, “Families of language uniform theories and their generating sets”, Izv. Irkutsk. Gos. Univ., Ser. Mat., 16 (2016), 62–76 | MR | Zbl
[14] S.V. Sudoplatov, “Combinations related to classes of finite and countably categorical structures and their theories”, Sib. Electron. Mat. Izv., 14 (2017), 135–150 | MR | Zbl
[15] S.V. Sudoplatov, “Relative $e$-spectra and relative closures for families of theories”, Sib. Elektron. Mat. Izv., 14 (2017), 296–307 | MR | Zbl
[16] S.V. Sudoplatov, “On semilattices and lattices for families of theories”, Sib. Elektron. Mat. Izv., 14 (2017), 980–985 | MR | Zbl
[17] A. Ehrenfeucht, G. Fuhrken, “A finitely axiomatizable complete theory with atomless $F_1(T)$”, Arch. Math. Logik, 14:3–4 (1971), 162–166 | DOI | MR | Zbl
[18] E.A. Palyutin, “Models with countable-categorical universal theories”, Algebra Logika, 10 (1971), 23–32 | MR | Zbl
[19] J.A. Makowsky, “On some conjecture connected with complete sentences”, Fund. Math., 81:3 (1974), 193–202 | DOI | MR | Zbl
[20] E.A. Palyutin, “Categorical Horn classes. I”, Algebra Logic, 19:5 (1980), 377–400 | DOI | MR | Zbl
[21] B.I. Zilber, “On a solution of the problem of finite axiomatizability for theories categorical in all infinite powers”, Transl., II. Ser., Am. Math. Soc., 135 (1987), 13–17 | DOI | Zbl
[22] E. Hrushovski, “Finitely Axiomatizable $\aleph_1$ Categorical Theories”, J. Symbolic Logic, 59:3 (1994), 838–844 | DOI | MR | Zbl
[23] M.G. Peretyatkin, Finitely Axiomatizable Theories, Plenum Publ. Corp, New York, 1997 | MR | Zbl
[24] T. Blossier, E. Bouscaren, “Finitely Axiomatizable Strongly Minimal Groups”, J. Symb. Log., 75:1 (2010), 25–50 | DOI | MR | Zbl
[25] S.V. Sudoplatov, Classification of Countable Models of Complete Theories, NSTU, Novosibirsk, 2018