On the stability and convergence of difference schemes for the generalized fractional diffusion equation with Robin boundary value conditions
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 738-752.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work a difference schemes of higher order approximation are constructed for the generalized diffusion equation of fractional order with the Robin boundary value conditions. Using the maximum principle, we obtain a priori estimates and prove the stability and the uniform convergence of difference schemes.
Keywords: fractional derivative, Caputo fractional derivative, difference schemes, Robin boundary value conditions, maximum principle, convergence and stability.
@article{SEMR_2020_17_a118,
     author = {A. K. Bazzaev},
     title = {On the stability and convergence of difference schemes for the generalized fractional diffusion equation with {Robin} boundary value conditions},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {738--752},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a118/}
}
TY  - JOUR
AU  - A. K. Bazzaev
TI  - On the stability and convergence of difference schemes for the generalized fractional diffusion equation with Robin boundary value conditions
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 738
EP  - 752
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a118/
LA  - ru
ID  - SEMR_2020_17_a118
ER  - 
%0 Journal Article
%A A. K. Bazzaev
%T On the stability and convergence of difference schemes for the generalized fractional diffusion equation with Robin boundary value conditions
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 738-752
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a118/
%G ru
%F SEMR_2020_17_a118
A. K. Bazzaev. On the stability and convergence of difference schemes for the generalized fractional diffusion equation with Robin boundary value conditions. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 738-752. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a118/

[1] V.E. Tarasov, Models in theoretical physics with integro-differentiation of fractional order, Izhevskij Inst. Komp. Issl., Izhevsk, 2011 (in Russian)

[2] V.Kh. Shogenov, A.A. Akhkubekov, R.A. Akhkubekov, “Method of fracional differentiation in theory of Brownian motion”, Izv. Vyssh. Uchebn. Zaved., Sev.-Kavk. Reg., Estestv. Nauki, 2004, no. 1(125), 94–103 | Zbl

[3] F. Mainardi, Y. Luchko, G. Pagnini, “The fundamental solution of the space-time fractional diffusion equation”, Fract. Calc. Appl. Anal., 4:2 (2001), 153–192 | MR | Zbl

[4] E. Scalas, R. Gorenflo, F. Mainardi, “Uncoupled continuous-time random walks: solution and limiting behaviour of the master equation”, Phys. Rev. E, 69 (2004) | DOI | MR

[5] Y. Zhang, D.A. Benson, M.M. Meerschaert, H.P. Scheffler, “On using random walks to solve the space fractional advectiona-dispersion equations”, J. Stat. Phys., 123:1 (2006), 89–110 | MR | Zbl

[6] N.G. Abrashina-Zhadaeva, I.A. Timoshchenko, “Finite-difference schemes for a diffusion equation with fractional derivatives in a multidimensional domain”, Differ. Equ., 49:7 (2013), 789–795 | DOI | MR | Zbl

[7] O.Yu. Dinariev, “Flow in a fractured medium with fractal fracture geometry”, Fluid Dyn., 25:5 (1990), 704–708 | DOI | MR | Zbl

[8] V.L. Kobelev, E.P. Romanov, Ya.L. Kobelev, L.Ya. Kobelev, “Non-Debye relaxation and diffusion in a fractal space”, Dokl. Phys., 43:8 (1998), 487–490 | MR | Zbl

[9] Ya.L. Kobelev, L.Ya. Kobelev, E.P. Romanov, “Self-maintained processes in the case of nonlinear fractal diffusion”, Dokl. Phys., 44:11 (1999), 752–753 | Zbl

[10] A.N. Kochubei, “Fractional-order diffusion”, Differ. Equations, 26:4 (1990), 660–670 | MR | Zbl

[11] V.Kh. Shogenov, S.K. Kumykova, M. Kh. Shkhanukov-Lafishev, “Generalized transport equation and fractional derivatives”, Dopov. Akad. Nauk Ukr., 1997:12 (1997), 47–54 | MR | Zbl

[12] G.I. Barenblatt, Yu.P. Zheltov, “Fundamental equations of filtration of homogeneous liquids in fissured rocks”, Sov. Phys., Dokl., 5 (1960), 522–525 | Zbl

[13] R.R. Nigmatullin, “The realization of generalized transfer equation in a medium with fractal geometry”, Phys. Status Solidi B, 133:1 (1986), 425–430 | DOI

[14] K.V. Chukbar, “Stochastic transport and fractional derivatives”, J. Exp. Theor. Phys., 81:5 (1995), 1025–1029

[15] V.M. Goloviznin, I.A. Korotkin, “Numerical methods for some one-dimensional equations with fractional derivatives”, Diff. Equat., 42:7 (2006), 967–973 | DOI | MR | Zbl

[16] R.R. Nigmatullin, “Relaxation features of systems with residual memory”, Phys. Solid State, 27:5 (1985), 1583–1585 (in Russian)

[17] V.M. Goloviznin, V.P. Kiselev, I.A. Korotkin, Numerical methods of solving diffusion equation with a fractional derivative in one-dimensional case, Preprint IBRAE-2003-12, IBRAE RAN, M., 2003 (in Russian)

[18] V.M. Goloviznin, V.P. Kiselev, I.A. Korotkin, Yu.P. Yurkov, “Direct problems of classical transfer of radionuclides in geological formations”, Izv. RAN. Energ., 4 (2004), 121–130 (in Russian)

[19] A.M. Nakhushev, Fractional calculus and its application, Fizmatgiz, M., 2003 | Zbl

[20] V.V. Uchaikin, “Anomalous diffusion of particles with a finite free-motion velocity”, Theor. Math. Phys., 115:1 (1998), 496–501 | DOI | MR | Zbl

[21] V.Yu. Zaburdaev, K.V. Chukbar, “Enhanced superdiffusion and finite velocity of Levy flights”, J. Exp. Theor. Phys., 94:2 (2002), 252–259 | DOI

[22] J. Klafter, M.F. Shlesinger, G. Zumofen, “Beyond Brownian motion”, Phys. Today, 49:2 (1996), 33–339 | DOI

[23] V.V. Tarasova, V.E. Tarasov, “Concept of dynamic memory in economics”, Commun. Nonlinear Sci. Numer. Simul., 55 (2018), 127–145 | DOI | MR | Zbl

[24] V.V. Tarasova, V.E. Tarasov, “Notion of dynamic memory in economic theory”, Journal of Economy and Entrepreneurship, 11:6 (2017), 868–880 | MR

[25] V.V. Tarasova, V.E. Tarasov, “Marginal utility for economic processes with memory”, Almanah Sovremennoj Nauki i Obrazovaniya, 7:109 (2016), 108–113 (in Russian) | MR

[26] V.V. Tarasova, V.E. Tarasov, “Economic indicator that generalizes average and marginal values”, Journal of Economy and Entrepreneurship, 10:11-1 (2016), 817–823 (in Russian)

[27] V.V. Tarasova, V.E. Tarasov, “Permanent low-level assistance in a wide range of ways”, Azimuth Scientific Research: Economics and Management, 3:16 (2016), 197–201 (in Russian)

[28] V.V. Tarasova, V.E. Tarasov, “A generalization of the concepts of the accelerator and multiplier to take into account of memory effects in macroeconomics”, Journal of Economy and Entrepreneurship, 10:10-3 (2016), 1121–1129 (in Russian) | MR

[29] V.V. Tarasova, V.E. Tarasov, “Economic accelerator with memory: discrete time approach”, Problems of Modern Science and Education, 78 (2016), 37–42 | DOI | MR

[30] V.V. Tarasova, V.E. Tarasov, “Exact Discretization of an Economic Accelerator and Multiplier with Memory”, Journal of Economy and Entrepreneurship, 11:7 (2017), 1063–1069 (in Russian)

[31] V.V. Tarasova, V.E. Tarasov, “Influence of memory effects on world economy and business”, Azimuth Scientific Research: Economics and Management, 5:4 (2016), 369–372 (in Russian)

[32] V.V. Tarasova, V.E. Tarasov, “Fractional dynamics of natural growth and memory effect in economics”, European Research, 23 (2016), 30–37 | DOI

[33] V.V. Tarasova, V.E. Tarasov, “Memory effects in hereditary Keynesian model”, Problems of Modern Science and Education, 80 (2016), 55–60 | DOI

[34] V.V. Tarasova, V.E. Tarasov, “Dynamic intersectoral models with memory that generalize Leontief model”, Journal of Economy and Entrepreneurship, 11:2-1(79) (2017), 913–924

[35] V.V. Tarasova, V.E. Tarasov, “Dynamic intersectoral models with power-law memory”, Communications in Nonlinear Science and Numerical Simulation, 54 (2018), 100–117 | DOI | MR | Zbl

[36] M. Caputo, M. Fabrizio, “On the notion of fractional derivative and applications to the hysteresis phenomena”, Meccanica, 52:13 (2017), 3043–3052 | DOI | MR | Zbl

[37] D. Baleanu, A. Rezapour, H. Mohammadi, “Some existence results on nonlinear fractional differential equations”, Philos. Trans. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci., 371:1990 (2013), 20120144 | MR | Zbl

[38] D. Baleanu, R. Agarwal, H. Mohammadi, S. Rezapour, “Some existence results for a nonlinear fractional differential equation on partially ordered Banach spaces”, Bound. Value Probl., 2013:112 (2013), 1–8 | MR | Zbl

[39] S. Abbas, “Existence of solutions to fractional order ordinary and delay differential equations and applications”, Electron. J. Differ. Equ., 2011:09 (2011), 1–11 | MR | Zbl

[40] K. Shah, Y. Li, “Existence theory of differential equations of arbitrary order”, Differential Equations: Theory and Current Research, ch. 2, IntechOpen, London, 2018, 35–55

[41] J. Zhang, X. Zhang, B. Yang, “An approximation scheme for the time fractional convection-diffusion equation”, Appl. Math. Comput., 335 (2018), 305–312 | DOI | MR | Zbl

[42] S. Lin, C. Lu, “Laplace transform for solving some families of fractional differential equations and its applications”, Adv. Difference Equ., 137 (2013) | MR | Zbl

[43] V. Turut, N. Guzel, “On solving partial differential equations of fractional oder by using the variational iteration method and multivariate Pade approximations”, Eur. J. Pure Appl. Math., 6:2 (2013), 147–171 | MR | Zbl

[44] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999 | MR | Zbl

[45] D. Baleanu, K. Diethelm, E. Scalas, J. Trujillo, Fractional Calculus: Models and Numerical Methods, Hackensack, NJ, 2012 | MR | Zbl

[46] A. Landy, Fractional differential equations and numerical methods, Thesis, University of Chester, 2009

[47] B. Jin, R. Lazarov, Z. Zhou, “A Petrov-Galerkin finite element method for fractional convection-diffusion equations”, SIAM J. Nummer. Anal., 54:1 (2016), 481–503 | DOI | MR | Zbl

[48] B. Jin, R. Lazarov, Z. Zhou, “Error analysis of a finite element method for the space-fractional parabolic equation”, SIAM J. Nummer. Anal., 52:5 (2016), 2272–2294 | DOI | MR | Zbl

[49] B. Jin, R. Lazarov, Z. Zhou, “An analysis of the $L_1$ scheme for the subdiffusion equation with nonsmooth data”, IMA J. Numer. Anal., 36:1 (2015), 197–211 | MR | Zbl

[50] M.M. Lafisheva, M.K. Shkhanukov-Lafishev, “Locally one-dimensional difference schemes for the fractional order diffusion equation”, Comput. Math. Math. Phys., 48:10 (2008), 1875–1884 | DOI | MR | Zbl

[51] A.K. Bazzaev, M.K. Shkhanukov-Lafishev, “Locally one-dimensional scheme for fractional diffusion equations with robin boundary conditions”, Comput. Math., Math. Phys., 50:7 (2010), 1141–1149 | DOI | MR | Zbl

[52] A.K. Bazzaev, A.B. Mambetova, M.Kh. Shkhanukov-Lafishev, “Locally one-dimensional scheme for the heat equation of fractional order with concentrated heat capacity”, Zh. Vychisl. Mat. Mat. Fiz., 52:9 (2012), 1656–1665 | Zbl

[53] A.K. Bazzaev, “Finite-difference schemes for diffusion equation of fractional order with Robin boundary conditions in multidimensional domain”, Ufa Math. J., 5:1 (2013), 11–16 | DOI | MR

[54] A.K. Bazzaev, M.K. Shkhanukov-Lafishev, “Locally one-dimensional schemes for the diffusion equation with a fractional time derivative in an arbitrary domain”, Comput. Math. and Math. Phys., 56 (2016), 106–115 | DOI | MR | Zbl

[55] A.A. Alikhanov, “Boundary value problems for the diffusion equation of the variable order in differential and difference settings”, Appl. Math. Comput., 219:8 (2012), 3938–3946 | MR | Zbl

[56] Tao Xu, Shujuan Lu, Wenping Chen, Hu Chen, “Finite difference scheme for multi-term variable-order fractional diffusion equation”, Adv. Difference Equ., 103 (2018) | MR | Zbl

[57] K. Diethelm, G. Walz, “Numerical solution of fractional order differential equations by extrapolation”, Numer. Algorithms, 16:3-4 (1997), 231–253 | DOI | MR | Zbl

[58] K. Diethelm, N.J. Ford, “Analysis of fractional differential equations”, J. Math. Anal. Appl., 265:2 (2002), 229–248 | DOI | MR | Zbl

[59] Yu. Povstenko, “Axisymmetric Solutions to Fractional Diffusion-Wave Equation in a Cylinder Under Robin Boundary Condition”, Eur. Phys. J.-Spec., 222:8 (2013), 1767–1777 | DOI | MR

[60] Yu. Povstenko, “Time-Fractional Heat Conduction in an Infinite Medium with a Spherical Hole Under Robin Boundary Condition. Fract”, Calc. Appl. Anal., 16:2 (2013), 354–369 | MR | Zbl

[61] Ch. Tadjeran, M. Meerschaert, H. Scheffler, “A second-order accurate numerical approximation for the fractional diffusion equation”, J. Comput. Phys., 213:1 (2006), 205–213 | DOI | MR | Zbl

[62] Yu. Luchko, “Maximum principle for the generalized time-fractional diffusion equation”, J. Math. Anal. Appl., 351:1 (2009), 218–223 | DOI | MR | Zbl

[63] Yu. Luchko, “Boundary value problems for the generalized time-fractional diffusion equation of distributed order”, Fract. Calc. Appl. Anal., 12:4 (2009), 409–422 | MR | Zbl

[64] Yu. Luchko, “Maximum principle and its application for the time-fractional diffusion equations”, Fract. Calc. Appl. Anal., 14:1 (2011), 110–124 | MR | Zbl

[65] Yu. Luchko, “Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equation”, Comput. Math. Appl., 59:5 (2010), 1766–1772 | DOI | MR | Zbl

[66] Juan J. Nieto, “Maximum principles for fractional differential equations derived from Mittag-Leffler functions”, Appl. Math. Lett., 23:10 (2010), 1248–1251 | DOI | MR | Zbl

[67] H. Ye, F. Liu, V. Anh, I. Turner, “Maximum principle and numerical method for the multi-term time-space Riesz-Caputo fractional differential equations”, Appl. Math. Comput., 227 (2014), 531–540 | MR | Zbl

[68] A.K. Bazzaev, M.K. Shkhanukov-Lafishev, “On the convergence of difference schemes for fractional differential equations with Robin boundary conditions”, Comput. Math. Math. Phys., 57:1 (2017), 133–144 | DOI | MR | Zbl

[69] F. Mainardi, P. Paradisi, “Fractional diffusive waves”, J. Comput. Acoust., 9:4 (2001), 1417–1436 | DOI | MR | Zbl

[70] H. Parsian, “Time fractional wave equation: Caputo sense”, Adv. Stud. Theor. Phys., 6:1-4 (2012), 95–100 | MR | Zbl

[71] F.I. Taukenova, M.K. Shkhanukov-Lafishev, “Difference methods for solving boundary value problems for fractional differential equations”, Comput. Math. Math. Phys., 46:10 (2006), 1785–1795 | DOI | MR

[72] A.A. Alikhanov, “Stability and convergence of difference schemes for boundary value problems for the fractional-order diffusion equation”, Comput. Math. Math. Phys., 56:4 (2016), 561–575 | DOI | MR | Zbl

[73] A.K. Bazzaev, M.K. Shkhanukov-Lafishev, “On the convergence of difference schemes for fractional differential equations with Robin boundary conditions”, Comput. Math. Math. Phys., 57:1 (2017), 133–144 | DOI | MR | Zbl

[74] A.A. Samarskii, A.V. Gulin, Stability of Difference Schemes, Nauka, M., 1973 | MR | Zbl

[75] A.A. Samarskii, The Theory of Difference Schemes, Marcel Dekker, New York, 2001 | MR | Zbl