Numerical method for determining the dependence of the dielectric permittivity on the frequency in the equation of electrodynamics with memory
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 179-189.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents a numerical method for determining the parameters of the memory function for a horizontally layered medium. Numerical modeling made it possible to choose the optimal frequency range for constructing the residual functional. Numerical examples illustrating the solution of the inverse problem are presented.
Keywords: Maxwell equations, inverse problem, residual functionality.
Mots-clés : Riccati equation
@article{SEMR_2020_17_a117,
     author = {U. D. Durdiev},
     title = {Numerical method for determining the dependence of the dielectric permittivity on the frequency in the equation of electrodynamics with memory},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {179--189},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a117/}
}
TY  - JOUR
AU  - U. D. Durdiev
TI  - Numerical method for determining the dependence of the dielectric permittivity on the frequency in the equation of electrodynamics with memory
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 179
EP  - 189
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a117/
LA  - ru
ID  - SEMR_2020_17_a117
ER  - 
%0 Journal Article
%A U. D. Durdiev
%T Numerical method for determining the dependence of the dielectric permittivity on the frequency in the equation of electrodynamics with memory
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 179-189
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a117/
%G ru
%F SEMR_2020_17_a117
U. D. Durdiev. Numerical method for determining the dependence of the dielectric permittivity on the frequency in the equation of electrodynamics with memory. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 179-189. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a117/

[1] V.G. Romanov, A. Lorenzi, “Identification of an electromagnetic coefficient connected with deformation currents”, Inverse Probl., 9:2 (1993), 301–319 | MR | Zbl

[2] V.G. Romanov, A. Lorenzi, “Stability estimates for an inverse problem related to viscoelastic media”, J. of Inverse III-Posed Probl., 14:1 (2006), 57–82 | MR | Zbl

[3] A. Lorenzi, F. Messina, V.G. Romanov, “Recovering a Lame kernel in a viscoelastic system”, Appl. Anal., 86:11 (2007), 1375–1395 | MR | Zbl

[4] V.G. Romanov, “Inverse problems for equation with a memory”, Eurasian Jour. of Math. and Computer Applications, 2:4 (2014), 51–80

[5] V.G. Romanov, “Problem of determining the permittivity in the stationary system of Maxwell equations”, Dokl. Math., 95:3 (2017), 230–234 | MR | Zbl

[6] A. Lorenzi, “An identification problem related to a nonlinear hyperbolic integro-differential equation”, Nonlinear Anal., Theory, Methods Appl., 22:1 (1994), 21–44 | MR | Zbl

[7] A. Lorenzi, E. Paparoni, “Direct and inverse problems in the theory of materials with memory”, Rend. Semin. Math. Univ. Padova, 87 (1992), 105–138 | MR | Zbl

[8] A. Lorenzi, V. Priymenko, “A duality approach for solving identification problems related to integrodifferential Maxwell's equations”, Rend. Semin. Math. Univ. Padova, 91 (1994), 31–51 | MR | Zbl

[9] A.L. Bukhgeim, G.V. Dyatlov, G. Uhlmann, “Unique continuation for hyperbolic equations with memory”, J. Inverse III-Posed Probl., 15:6 (2007), 587–598 | MR | Zbl

[10] G.V. Dyatlov, “Determination for the memory kernel from boundary measurements on a finite time interval”, J. Inverse III-Posed Probl., 11:1 (2003), 59–66 | MR | Zbl

[11] D.K. Durdiev, “Some multidemensional inverse problems of memory determination in hyperbolic equations”, J. Math. Phys. Anal. Geom., 3:4 (2007), 441–423 | MR | Zbl

[12] D.K. Durdiev, “Global solvability of an inverse problem for an integro-differential equation of electrodynamics”, Differ. Equ., 44:7 (2008), 893–899 | MR | Zbl

[13] D.K. Durdiev, U.D. Durdiev, “Stability of the inverse problem solution for Maxwell’s system integrodifferential equations in a homogeneous anisotropic media”, Uzbek Mathematical Journal, 2 (2014), 25–-34 (in Russian) | MR

[14] D.K. Durdiev, Zh.D. Totieva, “The problem of determining the one-dimensional kernel of the electroviscoelasticity equation”, Sib. Math. J., 58:3 (2017), 427-–444 | MR | Zbl

[15] D.K. Durdiev, Z.R. Bozorov, “A problem of determining the kernel of integrodifferential wave equation with weak horizontal properties”, Dal'nevost. Mat. Zh., 13:2 (2013), 209–221 | MR | Zbl

[16] D.K. Durdiev, Z.S. Safarov, “Inverse problem of determining the one-dimensional kernel of the viscoelasticity equation in a bounded domain”, Math. Notes, 97:6 (2015), 867–877 | MR | Zbl

[17] U.D. Durdiev, “A problem of identication of a special 2D memory kernel in an integro-differential hyperbolic equation”, Eurasian Jour. of Math. and Computer Appl., 7:2 (2019), 4–19

[18] U.D. Durdiev, Z.D. Totieva, “A problem of determining a special spatial part of 3D memory kernel in an integro-differential hyperbolic equation”, Math. Meth. Appl. Sciences, 42:18 (2019), 7440–7451 | MR | Zbl

[19] S.I. Kabanikhin, A.L. Karchevsky, A. Lorenzi, “Lavrent'ev regularization of solutions to linear integrodifferential inverse problems”, J. Inverse III-Posed Probl., 1:2 (1993), 115–140 | MR | Zbl

[20] A.L. Karchevsky, A.G. Fatianov, “Numerical solution of the inverse problem for a system of elasticity with the aftereffect for a vertically inhomogeneous medium”, Sib. Zh. Vychisl. Mat., 4:3 (2001), 259-–268 | Zbl

[21] V.G. Romanov, S.I. Kabanikhin, Inverse Problems for Maxwell's Equations, VSP, Utrecht–Berlin, 1994 | MR | Zbl

[22] D.K. Durdiev, Inverse Problems for Media with Aftereffcts, Turon-Ikbol, Tashkent, 2014 (in Russian)

[23] M.I. Epov, V.L. Mironov, P.P. Bobrov, A.V. Repin, The dielectric permeability of oil-comprising clayey rocks in the frequency range 100 Hz–4 GHz, No 847, Inst. Phys. SO RAN, Krasnoyarsk, 2009, 18 pp. (in Russian)

[24] A.N. Tikhonov, D.N. Shaxsuvarov, “Method for calculating electromagnetic fields excited by alternating current in layered media”, Izv. AN SSSR, ser. Geophys., 3 (1956), 245–251 (in Russian)

[25] V.I. Dmitriev, “General method for calculating the electromagnetic field in a layered medium”, Numerical methods and Programming, 10 (1968), 55–65 (in Russian)

[26] V.I. Dmitriev, E.A. Fedorova, “Numerical investigations of electromagnetic fields in layered medium”, Numerical methods and Programming, 32 (1980), 150–183 (in Russian)

[27] G.V. Akkuratov, V.I. Dmitriev, “Method for calculating the field of stable elastic vibrations in a layered medium”, Numerical methods in Geophysics, MGU, M., 1979, 3–12 (in Russian)

[28] G.V. Akkuratov, V.I. Dmitriev, “Method of calculation of a field of steady elastic vibrations in a layered medium”, Zh.Vychisl. Mat. Mat. Fiz., 24:2 (1984), 272-–286 | MR | Zbl

[29] A.G. Fatianov, B.G. Mikhailenko, “Method for calculating non-stationary wave fields in inelastic layered-inhomogeneous media”, Dokl. Akad. Nauk SSSR, 301 (1988), 834–839 (in Russian)

[30] A.G. Fatianov, Unsteady seismic wave fields in inhomogeneous anisotropic media with energy absorption, Preprint, No 857, Vychist. Center SO AN, Novosibirsk, 1989 (in Russian) | MR

[31] A.G. Fatianov, “Semi-analytical method for solving direct dynamic problems in layered media”, Dokl. Akad. Nauk SSSR, 310 (1990), 323–327 (in Russian) | MR

[32] A.L. Karchevsky, “A numerical solution to a system of elasticity equations for layered anisotropic media”, Russian Geology and Geophysics, 46:3 (2005), 339–351

[33] A.L. Karchevsky, “The direct dynamical problem of seismics for horizontally stratified media”, Sib. Electron. Mat. Izv., 2 (2005), 23–61 | MR | Zbl

[34] A.L. Karchevsky, “A frequency-domain analytical solution of Maxwell's equations for layered anisotropic media”, Russian Geology and Geophysics, 48:8 (2007), 689–695

[35] A.L. Karchevsky, B.R. Rysbayuly, “Analitical expressions for a solution of convective heat and moisture transfer equations in the frequency domain for layered media”, Eurasian Journal of Mathematical and Computer Applications, 3:4 (2015), 55–67

[36] A.L. Karchevsky, “Numerical solution to the one-dimensional inverse problem for an elastic system”, Dokl. Earth Sci., 375:8 (2000), 1325–1328 | Zbl

[37] A.L. Karchevsky, “Simultaneous reconstruction of permittivity and conductivity”, J. Inverse and III-Posed Probl., 17:4 (2009), 387–404 | MR | Zbl

[38] E. Kurpinar, A.L. Karchevsky, “Numerical solution of the inverse problem for the elasticity system for horizontally stratified media”, Inverse Probl., 20:3 (2004), 953–976 | MR | Zbl

[39] A.L. Karchevsky, “Numerical reconstruction of medium parameters of member of thin anisotropic layers”, J. Inverse III-Posed Probl., 12:5 (2004), 519–534 | MR | Zbl

[40] A.L. Karchevsky, “Reconstruction of pressure velocities and boundaries of thin layers in thinly-stratified layers”, J. Inv. Ill-Posed Problems, 18:4 (2010), 371–388 | MR | Zbl

[41] L.A. Nazarov, L.A. Nazarova, A.L. Karchevskii, A.V. Panov, “Estimation of stresses and deformation properties of rock masses which is based on the solution of an inverse problem from the measurement data of the free surface displacement”, J. Appl. Ind. Math., 7:2 (2013), 234–-240 | MR | Zbl

[42] A.A. Duchkov, A.L. Karchevsky, “Estimation of terrestrial heat flow from temperature measurements in bottom sediments”, J. Appl. Ind. Math., 7:4 (2013), 480–502 | MR | Zbl

[43] L.A. Nazarova, L.A. Nazarov, A.L. Karchevsky, M. Vandamme, “Determining Kinetic Parameters of a Block Coal Bed Gas by Solving Inverse Problem Based on Data of Borehole Gas Measurements”, Journal of Mining Science, 51:4 (2015), 666–-672

[44] A.L. Karchevsky, “Determination of the possibility of rock burst in a coal seam”, J. Appl. Ind. Math., 11:4 (2017), 527–-534 | MR | Zbl

[45] A.L. Karchevsky, L.A. Nazarova, V.N. Zakharov, L.A. Nazarov, “Stress state estimation in coal bed under random conditions in contact zone with enclosing rocks based on inverse problem solution”, Gornyi zhurnal, 11 (2017), 37–40

[46] F.P. Vasilyev, Numerical methods for solving extreme problems, Nauka, 1988 | MR | Zbl