Estimates for solutions of one class to systems of nonlinear differential equations with distributed delay
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 2204-2215.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we consider a system of nonlinear differential equations with distributed delay and periodic coefficients in linear terms. Sufficient conditions for exponential stability of the zero solution are established, estimates that characterize the rate of decay of solutions at infinity are obtained, and attraction sets of the zero solution are indicated. Similar results are obtained in the case of small perturbations in linear terms.
Keywords: exponential stability, Lyapunov - Krasovskii functional, nonlinear equation, distributed delay, periodic coefficients, perturbations in linear terms.
@article{SEMR_2020_17_a115,
     author = {T. Yskak},
     title = {Estimates for solutions of one class to systems of nonlinear differential equations with distributed delay},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {2204--2215},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a115/}
}
TY  - JOUR
AU  - T. Yskak
TI  - Estimates for solutions of one class to systems of nonlinear differential equations with distributed delay
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 2204
EP  - 2215
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a115/
LA  - ru
ID  - SEMR_2020_17_a115
ER  - 
%0 Journal Article
%A T. Yskak
%T Estimates for solutions of one class to systems of nonlinear differential equations with distributed delay
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 2204-2215
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a115/
%G ru
%F SEMR_2020_17_a115
T. Yskak. Estimates for solutions of one class to systems of nonlinear differential equations with distributed delay. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 2204-2215. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a115/

[1] A.D. Myshkis, Linear differential equations with retarded argument, Nauka, M., 1972 ; 1951 | MR | Zbl | Zbl

[2] N.N. Krasovskii, Stability of motion. Applications of Lyapunov's second method to differential systems and equations with delay, Stanford University Press, Stanford, 1963 | MR | Zbl

[3] L.E. El'sgol'ts, S.B. Norkin, Introduction to the Theory and Application of Differential Equations with Deviating Arguments, Academic Press, New York, 1973 | MR | Zbl

[4] J. Hale, Theory of Functional Differential Equations, Springer, New York, 1977 | MR | Zbl

[5] D.G. Korenevskiĭ, Stability of dynamical systems under random perturbations of parameters. Algebraic criteria, Naukova Dumka, Kiev, 1989 | MR | Zbl

[6] N.V. Azbelev, V.P. Maksimov, L.F. Rakhmatullina, Introduction to the theory of linear functional differential equations, Advanced Series in Mathematical Science and Engineering, 3, World Federation Publ. Comp., Atlanta, GA, 1995 | MR | Zbl

[7] Yu.F. Dolgiĭ, Stability of Periodic Differential-Difference Equations, Izd. Ural. Gos. Univ., Ekaterinburg, 1996

[8] V.B. Kolmanovskiĭ, A.D. Myshkis, Introduction to the theory and applications of functional differential equations, Mathematics and its Applications, 463, Kluwer Acad. Publ., Dordrecht, 1999 | MR | Zbl

[9] K. Gu, V.L. Kharitonov, J. Chen, Stability of time-delay systems, Birkhauser, Boston, 2003 | MR | Zbl

[10] R.P. Agarwal, L. Berezansky, E. Braverman, A. Domoshnitsky, Nonoscillation theory of functional differential equations with applications, Springer, Berlin, 2012 | MR | Zbl

[11] M.I. Gil', Stability of neutral functional differential equations, Atlantis Studies in Differential Equations, 3, Atlantis Press, Amsterdam, 2014 | DOI | MR | Zbl

[12] G.V. Demidenko, I.I. Matveeva, “Asymptotic properties of solutions to delay differential equations”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 5:3 (2005), 20–28 | Zbl

[13] G.V. Demidenko, I.I. Matveeva, “Stability of solutions to delay differential equations with periodic coefficients of linear terms”, Siberian Math. J., 48:5 (2007), 824–836 | DOI | MR | Zbl

[14] G.V. Demidenko, “Stability of solutions to linear differential equations of neutral type”, J. Anal. Appl., 7:3 (2009), 119–130 | MR | Zbl

[15] I.I. Matveeva, “Estimates of solutions to a class of systems of nonlinear delay differential equations”, J. Appl. Industr. Math., 7:4 (2013), 557–566 | DOI | MR | Zbl

[16] G.V. Demidenko, I.I. Matveeva, “On estimates of solutions to systems of differential equations of neutral type with periodic coefficients”, Sib. Math. J., 55:5 (2014), 866–881 | DOI | MR | Zbl

[17] G.V. Demidenko, I.I. Matveeva, “Estimates for solutions to a class of time-delay systems of neutral type with periodic coefficients and several delays”, Electron. J. Qual. Theory Differ. Equ., 2015:83 (2015), 1–22 | DOI | MR | Zbl

[18] G.V. Demidenko, I.I. Matveeva, “Exponential stability of solutions to nonlinear time-delay systems of neutral type”, Electron. J. Diff. Equ., 2016:19 (2016), 1–20 | MR | Zbl

[19] I.I. Matveeva, “On exponential stability of solutions to periodic neutral-type systems”, Sib. Math. J., 58:2 (2017), 264–270 | DOI | MR | Zbl

[20] G.V. Demidenko, I.I. Matveeva, M.A. Skvortsova, “Estimates for solutions to neutral differential equations with periodic coefficients of linear terms”, Sib. Math. J., 60:5 (2019), 828–841 | DOI | MR | Zbl

[21] I.I. Matveeva, “Exponential stability of solutions to nonlinear time-varying delay systems of neutral type equations with periodic coefficients”, Electron. J. Diff. Equ., 2020:20 (2020), 1–12 | MR | Zbl

[22] I.I. Matveeva, “Estimates for exponential decay of solutions to one class of nonlinear systems of neutral type with periodic coefficients”, Comput. Math. Math. Phys., 60:4 (2020), 601–609 | DOI | MR | Zbl

[23] T. Yskak, “Stability of solutions to systems of differential equations with distributed delay”, Funct. Differential Equations, 25:1–2 (2018), 97–108 | MR | Zbl