Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2020_17_a115, author = {T. Yskak}, title = {Estimates for solutions of one class to systems of nonlinear differential equations with distributed delay}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {2204--2215}, publisher = {mathdoc}, volume = {17}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a115/} }
TY - JOUR AU - T. Yskak TI - Estimates for solutions of one class to systems of nonlinear differential equations with distributed delay JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2020 SP - 2204 EP - 2215 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a115/ LA - ru ID - SEMR_2020_17_a115 ER -
%0 Journal Article %A T. Yskak %T Estimates for solutions of one class to systems of nonlinear differential equations with distributed delay %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2020 %P 2204-2215 %V 17 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a115/ %G ru %F SEMR_2020_17_a115
T. Yskak. Estimates for solutions of one class to systems of nonlinear differential equations with distributed delay. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 2204-2215. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a115/
[1] A.D. Myshkis, Linear differential equations with retarded argument, Nauka, M., 1972 ; 1951 | MR | Zbl | Zbl
[2] N.N. Krasovskii, Stability of motion. Applications of Lyapunov's second method to differential systems and equations with delay, Stanford University Press, Stanford, 1963 | MR | Zbl
[3] L.E. El'sgol'ts, S.B. Norkin, Introduction to the Theory and Application of Differential Equations with Deviating Arguments, Academic Press, New York, 1973 | MR | Zbl
[4] J. Hale, Theory of Functional Differential Equations, Springer, New York, 1977 | MR | Zbl
[5] D.G. Korenevskiĭ, Stability of dynamical systems under random perturbations of parameters. Algebraic criteria, Naukova Dumka, Kiev, 1989 | MR | Zbl
[6] N.V. Azbelev, V.P. Maksimov, L.F. Rakhmatullina, Introduction to the theory of linear functional differential equations, Advanced Series in Mathematical Science and Engineering, 3, World Federation Publ. Comp., Atlanta, GA, 1995 | MR | Zbl
[7] Yu.F. Dolgiĭ, Stability of Periodic Differential-Difference Equations, Izd. Ural. Gos. Univ., Ekaterinburg, 1996
[8] V.B. Kolmanovskiĭ, A.D. Myshkis, Introduction to the theory and applications of functional differential equations, Mathematics and its Applications, 463, Kluwer Acad. Publ., Dordrecht, 1999 | MR | Zbl
[9] K. Gu, V.L. Kharitonov, J. Chen, Stability of time-delay systems, Birkhauser, Boston, 2003 | MR | Zbl
[10] R.P. Agarwal, L. Berezansky, E. Braverman, A. Domoshnitsky, Nonoscillation theory of functional differential equations with applications, Springer, Berlin, 2012 | MR | Zbl
[11] M.I. Gil', Stability of neutral functional differential equations, Atlantis Studies in Differential Equations, 3, Atlantis Press, Amsterdam, 2014 | DOI | MR | Zbl
[12] G.V. Demidenko, I.I. Matveeva, “Asymptotic properties of solutions to delay differential equations”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 5:3 (2005), 20–28 | Zbl
[13] G.V. Demidenko, I.I. Matveeva, “Stability of solutions to delay differential equations with periodic coefficients of linear terms”, Siberian Math. J., 48:5 (2007), 824–836 | DOI | MR | Zbl
[14] G.V. Demidenko, “Stability of solutions to linear differential equations of neutral type”, J. Anal. Appl., 7:3 (2009), 119–130 | MR | Zbl
[15] I.I. Matveeva, “Estimates of solutions to a class of systems of nonlinear delay differential equations”, J. Appl. Industr. Math., 7:4 (2013), 557–566 | DOI | MR | Zbl
[16] G.V. Demidenko, I.I. Matveeva, “On estimates of solutions to systems of differential equations of neutral type with periodic coefficients”, Sib. Math. J., 55:5 (2014), 866–881 | DOI | MR | Zbl
[17] G.V. Demidenko, I.I. Matveeva, “Estimates for solutions to a class of time-delay systems of neutral type with periodic coefficients and several delays”, Electron. J. Qual. Theory Differ. Equ., 2015:83 (2015), 1–22 | DOI | MR | Zbl
[18] G.V. Demidenko, I.I. Matveeva, “Exponential stability of solutions to nonlinear time-delay systems of neutral type”, Electron. J. Diff. Equ., 2016:19 (2016), 1–20 | MR | Zbl
[19] I.I. Matveeva, “On exponential stability of solutions to periodic neutral-type systems”, Sib. Math. J., 58:2 (2017), 264–270 | DOI | MR | Zbl
[20] G.V. Demidenko, I.I. Matveeva, M.A. Skvortsova, “Estimates for solutions to neutral differential equations with periodic coefficients of linear terms”, Sib. Math. J., 60:5 (2019), 828–841 | DOI | MR | Zbl
[21] I.I. Matveeva, “Exponential stability of solutions to nonlinear time-varying delay systems of neutral type equations with periodic coefficients”, Electron. J. Diff. Equ., 2020:20 (2020), 1–12 | MR | Zbl
[22] I.I. Matveeva, “Estimates for exponential decay of solutions to one class of nonlinear systems of neutral type with periodic coefficients”, Comput. Math. Math. Phys., 60:4 (2020), 601–609 | DOI | MR | Zbl
[23] T. Yskak, “Stability of solutions to systems of differential equations with distributed delay”, Funct. Differential Equations, 25:1–2 (2018), 97–108 | MR | Zbl