Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2020_17_a114, author = {V. Sh. Roitenberg}, title = {On generic polinomial differential equations of second order on the circle}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {2122--2130}, publisher = {mathdoc}, volume = {17}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a114/} }
TY - JOUR AU - V. Sh. Roitenberg TI - On generic polinomial differential equations of second order on the circle JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2020 SP - 2122 EP - 2130 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a114/ LA - ru ID - SEMR_2020_17_a114 ER -
V. Sh. Roitenberg. On generic polinomial differential equations of second order on the circle. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 2122-2130. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a114/
[1] N.N. Bautin, E.A. Leontovich, Methods and techniques for qualitative study of dynamical systems on the plane, Nauka, M., 1990 | MR | Zbl
[2] E.A. Barbashin, V.A. Tabueva, Dynamical systems with cylindrical phase space, Nauka, M., 1969 | MR | Zbl
[3] V. Sh. Roitenberg, “Limit cycles of Lienard equations with periodic coefficients”, Math. Methods in Ingineering and Technology, 1 (2013), 5–7
[4] V. Sh. Roitenberg, “On limit cycles of a second-order differential equation on the circle that arise from infinity”, Bulletin of the Moscow State Regional University. Ser. Phisics and Mathematics, 2 (2017), 6–15 | DOI
[5] V. Sh. Roitenberg, “On limit cycles of some second order differential equation on the circle”, Sientifical and Technical Bulletin of the Volga Region, 1 (2017), 25–28 | DOI
[6] V.A. Pliss, “The number of periodic solutions of equations whose right-hand member is a polynomial”, Docl. Akad. Nauk SSSR, 127:5 (1959), 965–968 | MR | Zbl
[7] A.L. Neto, “On the number of solutions of the equation for which x(0)=x(1)”, Invent. Math., 59:2 (1980), 67–76 | DOI | MR | Zbl
[8] Ju. Ilyashenko, “Hilbert-type number for Abel equations, growth and zeros of holomorfic functions”, Nonlinearity, 13:4 (2000), 1337–1342 | DOI | MR | Zbl
[9] A. Casull, A. Guillamon, “Limit cycles for generalized Abel equations”, Int. J. Bifurcation Chaos Appl. Sci. Eng., 16:12 (2006), 3737–3745 | DOI | MR | Zbl
[10] M. Caubergh, F. Dumortier, “Hilbert's 16th problem for classical Lienard equations of even degree”, J. Differ. Equations, 244:6 (2008), 1359–1394 | DOI | MR | Zbl
[11] A.A. Andronov, E.A. Leontovich, I.I. Gordon, A.G. Maier, Qualitative theory of second-order dynamical systems, John Wiley Sons, Jerusalem etc, 1973 | MR | Zbl
[12] A.A. Andronov, E.A. Leontovich, I.I. Gordon, A.G. Maier, The theory of bifurcations of dynamical systems on the plane, Nauka, M., 1967 | MR | Zbl
[13] J. Palis, W. Melo, Geometric theory of dynamical systems. An introduction, Springer-Verlag, New York etc, 1982 | MR | Zbl