Equilibrium problem for an thermoelastic Kirchhoff--Love plate with a nonpenetration condition for known configurations of crack edges
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 2096-2104.

Voir la notice de l'article provenant de la source Math-Net.Ru

We formulate a new variational problem on the equilibrium of a thermoelastic Kirchhoff–Love plate in a domain with a cut. It is assumed that the plate is under the special loads for which the configuration of crack's edges is known in advance. This circumstance makes it possible to write down the general boundary condition of nonpenetration in a refined form, which, in turn, leads to new relations describing the possible mechanical interaction of opposite crack edges. The initial formulation of a problem presupposes the fulfillment of boundary conditions on the crack curve in the form of system of two inequalities and an equality. Solvability of the problem is proved, an equivalent differential setting is found.
Keywords: thermoelastic plate, crack, non-penetration, variational inequality, differential setting.
@article{SEMR_2020_17_a113,
     author = {N. P. Lazarev},
     title = {Equilibrium problem for an thermoelastic {Kirchhoff--Love} plate with a nonpenetration condition for known configurations of crack edges},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {2096--2104},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a113/}
}
TY  - JOUR
AU  - N. P. Lazarev
TI  - Equilibrium problem for an thermoelastic Kirchhoff--Love plate with a nonpenetration condition for known configurations of crack edges
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 2096
EP  - 2104
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a113/
LA  - en
ID  - SEMR_2020_17_a113
ER  - 
%0 Journal Article
%A N. P. Lazarev
%T Equilibrium problem for an thermoelastic Kirchhoff--Love plate with a nonpenetration condition for known configurations of crack edges
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 2096-2104
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a113/
%G en
%F SEMR_2020_17_a113
N. P. Lazarev. Equilibrium problem for an thermoelastic Kirchhoff--Love plate with a nonpenetration condition for known configurations of crack edges. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 2096-2104. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a113/

[1] P. Grisvard, Elliptic problems in nonsmooth domains, Pitman, Boston, etc, 1985 | MR | Zbl

[2] N.F. Morozov, Mathematical questions in the theory of cracks, Nauka, M., 1984 | MR | Zbl

[3] S.A. Nazarov, B.A. Plamenevski, Elliptic problems in domains with piecewise smooth boundaries, De Gruyter Expositions in Mathematics, 13, de Gruyter, Berlin, 1994 | MR | Zbl

[4] K. Ohtsuka, “Mathematics of Brittle Fracture”, Theoretical Studies on Fracture Mechanics in Japan, Hiroshima-Denki Inst. Technol., Hiroshima, 1997, 99–172

[5] A.M. Khludnev, “The equilibrium problem for a thermoelastic plate with a crack”, Sib. Math. J., 37:2 (1996), 394–404 | DOI | MR | Zbl

[6] H. Itou, V.A. Kovtunenko, K.R. Rajagopal, “Nonlinear elasticity with limiting small strain for cracks subject to nonpenetration”, Math. Mech. Solids, 22:6 (2017), 1334–1346 | DOI | MR | Zbl

[7] N.A. Kazarinov, E.M. Rudoy, V.Y. Slesarenko, V.V. Shcherbakov, “Mathematical and numerical simulation of equilibrium of an elastic body reinforced by a thin elastic inclusion”, Comput. Math. Math. Phys., 58:5 (2018), 761–774 | DOI | MR | Zbl

[8] A.M. Khludnev, Elasticity Problems in Nonsmooth Domains, Fizmatlit, M., 2010

[9] A.M. Khludnev, “Equilibrium problem of an elastic plate with an oblique crack”, J. Appl. Mech. Tech. Fiz., 38:5 (1997), 757–761 | DOI | MR | Zbl

[10] A.M. Khludnev, “On modeling thin inclusions in elastic bodies with a damage parameter”, Math. Mech. Solids, 24:9 (2019), 2742–2753 | DOI | MR | Zbl

[11] A.I. Furtsev, “The unilateral contact problem for a Timoshenko plate and a thin elastic obstacle”, Sib. Electron. Mat. Izv., 17 (2020), 364–379 | DOI | MR | Zbl

[12] A.M. Khludnev, L. Faella, C. Perugia, “Optimal control of rigidity parameters of thin inclusions in composite materials”, Z. Angew. Math. Phys., 68:2 (2017), 47 | DOI | MR | Zbl

[13] A.M. Khludnev, V.A. Kovtunenko, Analysis of Cracks in Solids, WIT-Press, Southampton, 2000

[14] A.M. Khludnev, V.V. Shcherbakov, “A note on crack propagation paths inside elastic bodies”, Appl. Math. Lett., 79:1 (2018), 80–84 | DOI | MR | Zbl

[15] V.A. Kovtunenko, A.N. Leont'ev, A.M. Khludnev, “An equilibrium problem of a plate with an oblique cut”, J. Appl. Mech. Tech. Phys., 39:2 (1998), 302–311 | DOI | MR | Zbl

[16] A. Furtsev, H. Itou, E. Rudoy, “Modeling of bonded elastic structures by a variational method: Theoretical analysis and numerical simulation”, Int. J. Solids Struct., 182–183 (2020), 100–111 | DOI

[17] N.P. Lazarev, “Differentiation of the energy functional in the equilibrium problem for a Timoshenko plate containing a crack”, J. Appl. Mech. Tech. Phys., 53:2 (2012), 299–307 | DOI | MR | Zbl

[18] N.P. Lazarev, T.S. Popova, “Variational problem of the equilibrium of a plate with geometrically nonlinear nonpenetration conditions on a vertical crack”, J. Math. Sci., 188:4 (2013), 398–409 | DOI | MR | Zbl

[19] N.P. Lazarev, T.S. Popova, G.A. Rogerson, “Optimal control of the radius of a rigid circular inclusion in inhomogeneous two-dimensional bodies with cracks”, Z. Angew. Math. Phys., 69:3 (2018), 53 | DOI | MR | Zbl

[20] N.P. Lazarev, E.M. Rudoy, “Optimal size of a rigid thin stiffener reinforcing an elastic plate on the outer edge”, Z. Angew. Math. Mech., 97:9 (2017), 1120–1127 | DOI | MR

[21] N. Lazarev, G. Semenova, “An optimal size of a rigid thin stiffener reinforcing an elastic two-dimensional body on the outer edge”, J. Optim. Theory Appl., 178:2 (2018), 614–626 | DOI | MR | Zbl

[22] N.A. Nikolaeva, “Method of fictitious domains for Signorini's problem in Kirchhoff-Love theory of plates”, J. Math. Sci. (N.Y.), 221:6 (2017), 872–882 | DOI | MR

[23] G. Fichera, Boundary Value Problems of Elasticity with Unilateral Constraints, Handbuch der Physik, 6a/2, Springer-Verlag, Berlin, 1972

[24] E.M. Rudoy, “Asymptotics of the energy functional for a fourth-order mixed boundary value problem in a domain with a cut”, Sib. Math. J., 50:2 (2009), 341–354 | DOI | MR | Zbl

[25] V.V. Shcherbakov, “Existence of an optimal shape of the thin rigid inclusions in the Kirchhoff-Love plate”, J. Appl. Ind. Math., 8:1 (2014), 97–105 | DOI | MR | Zbl

[26] V.V. Shcherbakov, “Shape optimization of rigid inclusions for elastic plates with cracks”, Z. Angew. Math. Phys., 67:3 (2016), 71 | DOI | MR | Zbl

[27] N.P. Lazarev, N.V. Neustroeva, N.A. Nikolaeva, “Optimal control of tilt angles in equilibrium problems for the Timoshenko plate with a oblique crack”, Sib. Elektron. Mat. Izv., 12 (2015), 300–308 | MR | Zbl

[28] N.P. Lazarev, H. Itou, “Equilibrium problems for Kirchhoff-Love plates with nonpenetration conditions for known configurations of crack edges”, Mathematical Notes of NEFU, 27:3 (2020), 52–65 | MR

[29] N.P. Lazarev, V.V. Everstov, N.A. Romanova, “Fictitious domain method for equilibrium problems of the Kirchhoff–Love plates with nonpenetration conditions for known configurations of plate edges”, Journal of Siberian Federal University – Mathematics and Physics, 12:6 (2019), 674–686 | DOI | MR | Zbl