Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2020_17_a113, author = {N. P. Lazarev}, title = {Equilibrium problem for an thermoelastic {Kirchhoff--Love} plate with a nonpenetration condition for known configurations of crack edges}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {2096--2104}, publisher = {mathdoc}, volume = {17}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a113/} }
TY - JOUR AU - N. P. Lazarev TI - Equilibrium problem for an thermoelastic Kirchhoff--Love plate with a nonpenetration condition for known configurations of crack edges JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2020 SP - 2096 EP - 2104 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a113/ LA - en ID - SEMR_2020_17_a113 ER -
%0 Journal Article %A N. P. Lazarev %T Equilibrium problem for an thermoelastic Kirchhoff--Love plate with a nonpenetration condition for known configurations of crack edges %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2020 %P 2096-2104 %V 17 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a113/ %G en %F SEMR_2020_17_a113
N. P. Lazarev. Equilibrium problem for an thermoelastic Kirchhoff--Love plate with a nonpenetration condition for known configurations of crack edges. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 2096-2104. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a113/
[1] P. Grisvard, Elliptic problems in nonsmooth domains, Pitman, Boston, etc, 1985 | MR | Zbl
[2] N.F. Morozov, Mathematical questions in the theory of cracks, Nauka, M., 1984 | MR | Zbl
[3] S.A. Nazarov, B.A. Plamenevski, Elliptic problems in domains with piecewise smooth boundaries, De Gruyter Expositions in Mathematics, 13, de Gruyter, Berlin, 1994 | MR | Zbl
[4] K. Ohtsuka, “Mathematics of Brittle Fracture”, Theoretical Studies on Fracture Mechanics in Japan, Hiroshima-Denki Inst. Technol., Hiroshima, 1997, 99–172
[5] A.M. Khludnev, “The equilibrium problem for a thermoelastic plate with a crack”, Sib. Math. J., 37:2 (1996), 394–404 | DOI | MR | Zbl
[6] H. Itou, V.A. Kovtunenko, K.R. Rajagopal, “Nonlinear elasticity with limiting small strain for cracks subject to nonpenetration”, Math. Mech. Solids, 22:6 (2017), 1334–1346 | DOI | MR | Zbl
[7] N.A. Kazarinov, E.M. Rudoy, V.Y. Slesarenko, V.V. Shcherbakov, “Mathematical and numerical simulation of equilibrium of an elastic body reinforced by a thin elastic inclusion”, Comput. Math. Math. Phys., 58:5 (2018), 761–774 | DOI | MR | Zbl
[8] A.M. Khludnev, Elasticity Problems in Nonsmooth Domains, Fizmatlit, M., 2010
[9] A.M. Khludnev, “Equilibrium problem of an elastic plate with an oblique crack”, J. Appl. Mech. Tech. Fiz., 38:5 (1997), 757–761 | DOI | MR | Zbl
[10] A.M. Khludnev, “On modeling thin inclusions in elastic bodies with a damage parameter”, Math. Mech. Solids, 24:9 (2019), 2742–2753 | DOI | MR | Zbl
[11] A.I. Furtsev, “The unilateral contact problem for a Timoshenko plate and a thin elastic obstacle”, Sib. Electron. Mat. Izv., 17 (2020), 364–379 | DOI | MR | Zbl
[12] A.M. Khludnev, L. Faella, C. Perugia, “Optimal control of rigidity parameters of thin inclusions in composite materials”, Z. Angew. Math. Phys., 68:2 (2017), 47 | DOI | MR | Zbl
[13] A.M. Khludnev, V.A. Kovtunenko, Analysis of Cracks in Solids, WIT-Press, Southampton, 2000
[14] A.M. Khludnev, V.V. Shcherbakov, “A note on crack propagation paths inside elastic bodies”, Appl. Math. Lett., 79:1 (2018), 80–84 | DOI | MR | Zbl
[15] V.A. Kovtunenko, A.N. Leont'ev, A.M. Khludnev, “An equilibrium problem of a plate with an oblique cut”, J. Appl. Mech. Tech. Phys., 39:2 (1998), 302–311 | DOI | MR | Zbl
[16] A. Furtsev, H. Itou, E. Rudoy, “Modeling of bonded elastic structures by a variational method: Theoretical analysis and numerical simulation”, Int. J. Solids Struct., 182–183 (2020), 100–111 | DOI
[17] N.P. Lazarev, “Differentiation of the energy functional in the equilibrium problem for a Timoshenko plate containing a crack”, J. Appl. Mech. Tech. Phys., 53:2 (2012), 299–307 | DOI | MR | Zbl
[18] N.P. Lazarev, T.S. Popova, “Variational problem of the equilibrium of a plate with geometrically nonlinear nonpenetration conditions on a vertical crack”, J. Math. Sci., 188:4 (2013), 398–409 | DOI | MR | Zbl
[19] N.P. Lazarev, T.S. Popova, G.A. Rogerson, “Optimal control of the radius of a rigid circular inclusion in inhomogeneous two-dimensional bodies with cracks”, Z. Angew. Math. Phys., 69:3 (2018), 53 | DOI | MR | Zbl
[20] N.P. Lazarev, E.M. Rudoy, “Optimal size of a rigid thin stiffener reinforcing an elastic plate on the outer edge”, Z. Angew. Math. Mech., 97:9 (2017), 1120–1127 | DOI | MR
[21] N. Lazarev, G. Semenova, “An optimal size of a rigid thin stiffener reinforcing an elastic two-dimensional body on the outer edge”, J. Optim. Theory Appl., 178:2 (2018), 614–626 | DOI | MR | Zbl
[22] N.A. Nikolaeva, “Method of fictitious domains for Signorini's problem in Kirchhoff-Love theory of plates”, J. Math. Sci. (N.Y.), 221:6 (2017), 872–882 | DOI | MR
[23] G. Fichera, Boundary Value Problems of Elasticity with Unilateral Constraints, Handbuch der Physik, 6a/2, Springer-Verlag, Berlin, 1972
[24] E.M. Rudoy, “Asymptotics of the energy functional for a fourth-order mixed boundary value problem in a domain with a cut”, Sib. Math. J., 50:2 (2009), 341–354 | DOI | MR | Zbl
[25] V.V. Shcherbakov, “Existence of an optimal shape of the thin rigid inclusions in the Kirchhoff-Love plate”, J. Appl. Ind. Math., 8:1 (2014), 97–105 | DOI | MR | Zbl
[26] V.V. Shcherbakov, “Shape optimization of rigid inclusions for elastic plates with cracks”, Z. Angew. Math. Phys., 67:3 (2016), 71 | DOI | MR | Zbl
[27] N.P. Lazarev, N.V. Neustroeva, N.A. Nikolaeva, “Optimal control of tilt angles in equilibrium problems for the Timoshenko plate with a oblique crack”, Sib. Elektron. Mat. Izv., 12 (2015), 300–308 | MR | Zbl
[28] N.P. Lazarev, H. Itou, “Equilibrium problems for Kirchhoff-Love plates with nonpenetration conditions for known configurations of crack edges”, Mathematical Notes of NEFU, 27:3 (2020), 52–65 | MR
[29] N.P. Lazarev, V.V. Everstov, N.A. Romanova, “Fictitious domain method for equilibrium problems of the Kirchhoff–Love plates with nonpenetration conditions for known configurations of plate edges”, Journal of Siberian Federal University – Mathematics and Physics, 12:6 (2019), 674–686 | DOI | MR | Zbl