Singular perturbed integral equations with rapidly oscillation coefficients
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 2068-2083.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article considers a singularly perturbed integral equation with a slowly varying kernel and a rapidly oscillating coefficient. The main idea with which the construction of asymptotic solutions of such problems is carried out is the transition (by differentiating the original system with respect to the independent variable) to an equivalent integro-differential equation and the subsequent application of the S.A. Lomov's regularization method. In this paper, we have implemented the case of a singular perturbed integral equation containing (along with a slowly varying kernel and a slowly varying inhomogeneity) a rapidly varying coefficient of an unknown function. Previously, such integral equations were not considered from the standpoint of the regularization method. The presence of a rapidly oscillating coefficient significantly complicates the structure of the solution space for the corresponding iterative problems, which contain (in contrast to problems with slowly varying coefficients) nonlinear exponents of regu-larizing functions. Therefore, the study of the solvability of iterative problems must be carried out in the presence of both nonresonant and resonant spectral relations. All these issues are reflected in this work.
@article{SEMR_2020_17_a112,
     author = {B. T. Kalimbetov and V. F. Safonov and O. D. Tuichiev},
     title = {Singular perturbed integral equations with rapidly oscillation coefficients},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {2068--2083},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a112/}
}
TY  - JOUR
AU  - B. T. Kalimbetov
AU  - V. F. Safonov
AU  - O. D. Tuichiev
TI  - Singular perturbed integral equations with rapidly oscillation coefficients
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 2068
EP  - 2083
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a112/
LA  - ru
ID  - SEMR_2020_17_a112
ER  - 
%0 Journal Article
%A B. T. Kalimbetov
%A V. F. Safonov
%A O. D. Tuichiev
%T Singular perturbed integral equations with rapidly oscillation coefficients
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 2068-2083
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a112/
%G ru
%F SEMR_2020_17_a112
B. T. Kalimbetov; V. F. Safonov; O. D. Tuichiev. Singular perturbed integral equations with rapidly oscillation coefficients. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 2068-2083. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a112/

[1] S.A. Lomov, Introduction to the general theory of singular perturbations, Nauka, M., 1981 | MR | Zbl

[2] S.A. Lomov, I.S. Lomov, Osnovy matematicheskoy teorii pogranichnogo sloya, Izdatel'stvo Moskovskogo universiteta, M., 2011

[3] A.D. Ryzhikh, “Primeneniye metoda regulyarizatsii dlya uravneniy s bystro ostsilliruyushchimi koeffitsiyentami”, Materaly Vsesoyuznoy konferentsii po asimptoticheskim metodam, v. I, Nauka, Alma-ata, 1979, 64–66

[4] S.F. Feshchenko, N.I. Shkil', L.D. Nikolenko, “Asymptotic methods in the theory of linear differential equations”, Modern Analytic and Computational Methods in Science and Mathematics, 10, American Elsevier Publishing Company, Inc., New York, 1967 | MR | Zbl

[5] N.I. Shkil', Asimptoticheskiye metody v differentsial'nykh uravneniyakh, Vyshcha Shkola, Kiev, 1971 (In Russian)

[6] Yu.L. Daletskii, S.G. Kreyn, “O differentsial'nykh uravneniyakh v gil'bertovom prostranstve”, Ukr. Mat. Zh., 2:4 (1950), 71–91 | Zbl

[7] Yu.L. Daletskii, “An asymptotic method for certain differential equations with oscillating coefficients”, Sov. Math., Dokl., 3 (1962), 520–523 | MR | Zbl

[8] YU.L. Daletskii, M.G. Kreyn, Stability of solutions of differential equations in Banach space, Nauka, M., 1970 | MR | Zbl

[9] B.T. Kalimbetov, V.F. Safonov, “Integro-differentiated singularly perturbed equations with fast oscillating coefficients”, Bulletin of KarSU, series Mathematics, 94:2 (2019), 33–47

[10] A.A. Bobodzhanov, V.F. Safonov, Singulyarno vozmushchennyye integral'nyye i integro-differentsial'nyye uravneniya s bystro izmenyayemymi yadrami i uravneniya s diagonal'nym vyrozhdeniyem yadra, «Sputnik +», M., 2017

[11] B.T. Kalimbetov, V.F. Safonov, “Integro-differentsial'nyye singulyarno vozmushchennyye uravneniya s bystro ostsilliruyushchimi koeffitsiyentami”, Sovremennyye problemy matematiki i mekhaniki, M., 2019, 299–302

[12] B.T. Kalimbetov, “Asimptotika resheniy integro-differentsial'noy sistemy s parametricheskim usileniyem”, Teoreticheskiye i prikladnyye voprosy matematiki, mekhaniki i informatiki, Karaganda, 2019, 82–83

[13] B.T. Kalimbetov, V.F. Safonov, “Singulyarno vozmushchennaya sistema integro-differentsial'nykh uravneniy s bystro ostsilliruyushchimi koeffitsiyentami isb ystro izmenyayushchimisya yadrami”, Izvestiya MKTU im. Kh.A. Yasavi, Seriya matematika, fizika, informatika, 9:2 (2019), 42–69

[14] B.T. Kalimbetov, V.F. Safonov, “Integro-differentsial'noye uravneniye tipa Fredgol'ma s bystro ostsilliruyushchimi koeffitsiyentami”, Materialy Uzbeksko-Rossiyskoy nauchnoy konferentsii «Neklassicheskiye uravneniya matematicheskoy fiziki i ikh prilozheni» (Tashkent, 2019), 158–159

[15] B.T. Kalimbetov, M.A. Temirbekov, “Asimptotika resheniya singulyarno vozmushchennoy integro-differentsial'noy sistemy s bystro ostsilliruyushchimi koeffitsiyentami”, Sbornik tezisov dokladov mezhdunarodnoy konferentsii «Aktual'nyye problemy matematicheskoy fiziki», M., 2019, 29–30

[16] V.F. Safonov, A.A. Bobodzhanov, Kurs vysshey matematiki. Singulyarno vozmushchennyye zadachi i metod regulyarizatsii, uchebnoye posobiye, Izdatel'skiy dom MEI, M., 2012

[17] V.F. Safonov, O.D. Tuychiyev, “Regularization of singularly perturbed integral equations with rapidly varying kernels and their asymptotics”, Differ. Equ., 33:9 (1997), 1203–1215 | MR | Zbl