Algebraic limit cycles of planar cubic systems
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 2045-2054

Voir la notice de l'article provenant de la source Math-Net.Ru

We study algebraic limit cycles of differential systems of the form $\dot x= x+P_3(x,y), \ \dot y=y+Q_3(x,y)$ where $P_3(x,y)$ and $Q_3(x,y)$ are homogeneous cubic polynomials.
Keywords: polynomial systems
Mots-clés : algebraic limit cycles, non-algebraic limit cycles, phase portraits.
@article{SEMR_2020_17_a110,
     author = {E. P. Volokitin and V. M. Cheresiz},
     title = {Algebraic limit cycles of planar cubic systems},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {2045--2054},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a110/}
}
TY  - JOUR
AU  - E. P. Volokitin
AU  - V. M. Cheresiz
TI  - Algebraic limit cycles of planar cubic systems
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 2045
EP  - 2054
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a110/
LA  - en
ID  - SEMR_2020_17_a110
ER  - 
%0 Journal Article
%A E. P. Volokitin
%A V. M. Cheresiz
%T Algebraic limit cycles of planar cubic systems
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 2045-2054
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a110/
%G en
%F SEMR_2020_17_a110
E. P. Volokitin; V. M. Cheresiz. Algebraic limit cycles of planar cubic systems. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 2045-2054. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a110/