Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2020_17_a110, author = {E. P. Volokitin and V. M. Cheresiz}, title = {Algebraic limit cycles of planar cubic systems}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {2045--2054}, publisher = {mathdoc}, volume = {17}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a110/} }
E. P. Volokitin; V. M. Cheresiz. Algebraic limit cycles of planar cubic systems. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 2045-2054. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a110/
[1] G. Darboux, “Mémoire sur les équations différentielles algébrique du premier ordre et du premier degré (Mélanges)”, Darboux Bull. (2), II (1878), 60–96 ; 123–144 ; 151–200 | Zbl
[2] H. Poincaré, “Sur lìntégration algébrique des équations différentielles du premier ordre et du premier degré”, Rend. Circ. Mat. Palermo, 5 (1891), 161–191 | DOI | Zbl
[3] J. Llibre, X. Zhang, “A survay on algebraic end explicit non-algebraic limit cycles in planar differential systems”, Exposiones Mathematicae (to appear) (Available online 15 June 2020) | DOI | MR
[4] A. Bendjeddou, J. Llibre, T. Salhi, “Dynamics of the polynomial differential systems with homogeneous nonlinearities and a star node”, J. Diff. Equ., 254:8 (2013), 3530–3537 | DOI | MR | Zbl
[5] E.P. Volokitin, V.M, Cheresiz, “Qualitative investigation of plane polynomial Darboux-type systems”, Sib. Electron. Mat. Izv., 13 (2016), 1170–1186 | MR | Zbl
[6] J. Giné, M. Grau, “Coexistence of algebraic and non-algebraic limit cycles, explicity given, using Riccati equations”, Nonlinearity, 19:8 (2006), 1939–1950 | DOI | MR | Zbl
[7] A. Cima, J. Llibre, “Algebraic and topological classification of the homogeneous cubic vector fields in the plane”, J. Math. Anal. Appl., 147:2 (1990), 420–448 | DOI | MR | Zbl
[8] Y.-c. Liu, “On differential equation with algebraic limit cycle of second degree $dy/dx=(a_{10}x+a_{01}y+a_{30}x^3+a_{21}x^2y+a_{12}xy^2+a_{03}y^3)/ (b_{10}x+b_{01}y+b_{30}x^3+b_{21}x^2y+b_{12}xy^2+b_{03}y^3)$”, Advancement in Math., 4 (1958), 143–149 | MR
[9] P.S. Belevec, R.T. Valeeva, “A class of dynamic systems with an algebraic limit cycle”, Kuibyshev. Gos. Ped. Inst. Nauchn. Trudy, 232 (1979), 5–8 | MR
[10] B.Q. Shen, “Existence of limit cycles of a system $(E_3^2)$ with elliptic solution”, Chin. Ann. Math. A, 14:6 (1993), 698–706 | MR
[11] R. Benterki, J. Llibre, “Polynomial differential systems with explicit non-algebraic limit cycles”, Electron. J. Differ. Equ., 2012 (2012), 78 | DOI | MR | Zbl