Volumetric growth of neo-Hookean incompressible material
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1990-2027.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a mathematical model of an incompressible neo-Hookean material, which is widely used in the modeling of biological tissues. The derivation of the governing equations for the deformation field, pressure, and growth factor is given. The resulting model includes the steady-state moment balance equation, the mass balance equation, and the growth factor evolutionary equation. The problem of material growth under the action of hydrostatic pressure is considered. The solution is found using the Lyapunov-Schmidt method. A detailed analysis of the linearized equations is carried out. The existence of a strong solution to the nonlinear problem on an arbitrary time interval for small external load is proved.
Keywords: volumetric growth, mathematical modeling of brain growth, mathematical problems of nonlinear elasticity.
@article{SEMR_2020_17_a108,
     author = {P. I. Plotnikov},
     title = {Volumetric growth of {neo-Hookean} incompressible material},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1990--2027},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a108/}
}
TY  - JOUR
AU  - P. I. Plotnikov
TI  - Volumetric growth of neo-Hookean incompressible material
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 1990
EP  - 2027
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a108/
LA  - ru
ID  - SEMR_2020_17_a108
ER  - 
%0 Journal Article
%A P. I. Plotnikov
%T Volumetric growth of neo-Hookean incompressible material
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 1990-2027
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a108/
%G ru
%F SEMR_2020_17_a108
P. I. Plotnikov. Volumetric growth of neo-Hookean incompressible material. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1990-2027. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a108/

[1] P. Ciarlet, Mathematical elasticity, v. I, Studies in Mathematics and its Applications, 20, Three-dimensional elasticity, North–Holland, Amsterdam etc., 1988 | MR | Zbl

[2] P. Ciarletta, D. Ambrosi, G.A. Maugin, “Mass transport in morphogenetic processes: a second gradient theory for volumetric growth and material remodeling”, J. Mech. Phys. Solids, 60:3 (2012), 432–450 | DOI | MR | Zbl

[3] S.C. Cowin, “Tissue growth and remodeling”, Annu. Rev. Biomed. Eng., 6 (2004), 77–107 | DOI

[4] D. Ebin, R. Saxton, “The initial-value problem for elastodynamics of incompressible bodies”, Arch. Ration. Mech. Anal., 94 (1986), 15–38 | DOI | MR | Zbl

[5] D. Ebin, “Global solutions of the equations of elastodynamics of incompressible neo-Hookean materials”, Proc. Natl. Acad. Sci. USA, 90:9 (1993), 3802–3805 | DOI | MR | Zbl

[6] M. Epstein, G. Maugin, “Thermomechanics of volumetric growth in uniform bodies”, Int. J. Plast., 16:7–8 (2000), 951–978 | DOI | Zbl

[7] E. Rodriguez, A. Hoger, A. McCulloch, “Stress-dependent finite growth law in soft elastic tissue”, J. Biomech., 27 (1994), 455–467 | DOI

[8] R. Skalak, G. Dasgupta, M. Moss, E. Otten, P. Dullemeijer, H. Vilmann, “Analytical description of growth”, J. Theor. Biol., 94:3 (1982), 555–577 | DOI | MR

[9] V.A. Solonnikov, “On general boundary problems for systems which are elliptic in the sense of A. Douglis and L. Nirenberg. I”, Am. Math. Soc., Transl., II. Ser., 56 (1964), 193–232 | DOI | MR | Zbl

[10] T. Valent, Boundary value problems of finite elasticity. Local theorems on existence, uniqueness, and analytic dependence on data, Springer Tracts in Natural Philosophy, 31, Springer-Verlag, New York etc., 1988 | DOI | MR | Zbl