Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2020_17_a108, author = {P. I. Plotnikov}, title = {Volumetric growth of {neo-Hookean} incompressible material}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1990--2027}, publisher = {mathdoc}, volume = {17}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a108/} }
P. I. Plotnikov. Volumetric growth of neo-Hookean incompressible material. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1990-2027. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a108/
[1] P. Ciarlet, Mathematical elasticity, v. I, Studies in Mathematics and its Applications, 20, Three-dimensional elasticity, North–Holland, Amsterdam etc., 1988 | MR | Zbl
[2] P. Ciarletta, D. Ambrosi, G.A. Maugin, “Mass transport in morphogenetic processes: a second gradient theory for volumetric growth and material remodeling”, J. Mech. Phys. Solids, 60:3 (2012), 432–450 | DOI | MR | Zbl
[3] S.C. Cowin, “Tissue growth and remodeling”, Annu. Rev. Biomed. Eng., 6 (2004), 77–107 | DOI
[4] D. Ebin, R. Saxton, “The initial-value problem for elastodynamics of incompressible bodies”, Arch. Ration. Mech. Anal., 94 (1986), 15–38 | DOI | MR | Zbl
[5] D. Ebin, “Global solutions of the equations of elastodynamics of incompressible neo-Hookean materials”, Proc. Natl. Acad. Sci. USA, 90:9 (1993), 3802–3805 | DOI | MR | Zbl
[6] M. Epstein, G. Maugin, “Thermomechanics of volumetric growth in uniform bodies”, Int. J. Plast., 16:7–8 (2000), 951–978 | DOI | Zbl
[7] E. Rodriguez, A. Hoger, A. McCulloch, “Stress-dependent finite growth law in soft elastic tissue”, J. Biomech., 27 (1994), 455–467 | DOI
[8] R. Skalak, G. Dasgupta, M. Moss, E. Otten, P. Dullemeijer, H. Vilmann, “Analytical description of growth”, J. Theor. Biol., 94:3 (1982), 555–577 | DOI | MR
[9] V.A. Solonnikov, “On general boundary problems for systems which are elliptic in the sense of A. Douglis and L. Nirenberg. I”, Am. Math. Soc., Transl., II. Ser., 56 (1964), 193–232 | DOI | MR | Zbl
[10] T. Valent, Boundary value problems of finite elasticity. Local theorems on existence, uniqueness, and analytic dependence on data, Springer Tracts in Natural Philosophy, 31, Springer-Verlag, New York etc., 1988 | DOI | MR | Zbl