Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2020_17_a107, author = {A. E. Mamontov and D. A. Prokudin}, title = {One-dimensional multicomponent hemodynamics}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1975--1989}, publisher = {mathdoc}, volume = {17}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a107/} }
A. E. Mamontov; D. A. Prokudin. One-dimensional multicomponent hemodynamics. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1975-1989. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a107/
[1] T.J. Pedley, The fluid mechanics of large blood vessels, Cambridge University Press, Cambridge etc, 1980 | Zbl
[2] L. Formaggia, A. Veneziani, Reduced and multiscale models for the human cardiovascular system, Politecnico di Milano, Milan, 2003
[3] A. Quarteroni, L. Formaggia, Mathematical modelling and numerical simulation of the cardio–vascular system, Elsevier, Amsterdam, 2004 | MR
[4] L. Euler, Principia pro motu sanguinis per arterias determinando, Euler Archive — All Works, 855, , 1862 https://scholarlycommons.pacific.edu/euler-works/855
[5] Thomas J. R. Hughes, J. Lubliner, “On the one-dimensional theory of blood flow in the larger vessels”, Math. Biosci., 18 (1973), 161–170 | DOI | Zbl
[6] D. Bessems, M. Rutten, F.N. van de Vosse, “A wave propagation model of blood flow in large vessels using an approximate velocity profile function”, J. Fluid Mech., 580 (2007), 145–168 | DOI | MR | Zbl
[7] D. Bessems, C.G. Giannopapa, M.C. Rutten, F.N. van de Vosse, “Experimental validation of a time–domain–based wave propagation model of blood flow in viscoelastic vessels”, J. Biomech., 41 (2008), 284–291 | DOI
[8] R. Raghu, I. Vignon–Clementel, C.A. Figueroa, C. Taylor, “Comparative study of viscoelastic arterial wall models in nonlinear one-dimensional finite element simulations of blood flow”, J. Biomech. Eng., 133:8 (2011), 081003 | DOI | MR
[9] G. Mulder, A. Marzo, A.C.B. Bogaerds, S.C. Coley, P. Rongen, D.R. Hose, F.N. van de Vosse, “Patient-specific modeling of cerebral blood flow geometrical variations in a 1d model”, Cardiovascular Engineering and Technology, 2 (2011), 334–348 | DOI
[10] A.M. Barlukova, A.A. Cherevko, A.P. Chupakhin, “Traveling waves in a one-dimensional model of hemodynamics”, J. Appl. Mech. Tech. Phys., 55:6 (2014), 917–926 | DOI | MR | Zbl
[11] A.E. Mamontov, D.A. Prokudin, “Global unique solvability of the initial-boundary value problem for the equations of one-dimensional polytropic flows of viscous compressible multifluids”, J. Math. Fluid Mech., 21:1 (2019), 9 | DOI | MR | Zbl
[12] A.E. Mamontov, D.A. Prokudin, “Solvability of a problem for the equations of the dynamics of one-temperature mixtures of heat-conducting viscous compressible fluids”, Dokl. Math., 99:3 (2019), 273–276 | DOI | MR | Zbl
[13] S. Ya. Belov, “On the initial-boundary value problems for barotropic motions of a viscous gas in a region with permeable boundaries”, J. Math. Kyoto Univ., 34:2 (1994), 369–389 | MR | Zbl
[14] S.N. Antontsev, A.V. Kazhikhov, V.N. Monakhov, Boundary value problems in mechanics of nonhomogeneous fluids, Studies in Mathematics and its Applications, 22, North-Holland, Amsterdam etc, 1990 | MR | Zbl
[15] V.A. Solonnikov, “The solvability of the initial-boundary value problem for the equations of motion of the viscous compressible fluid”, Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova, 56, 1976, 128–142 | MR | Zbl
[16] V.A. Solonnikov, A.V. Kazhikhov, “Existence theorems for the equations of motion of a compressible viscous fluid”, Ann. Rev. Fluid Mech., 13 (1981), 79–95 | DOI | Zbl