One-dimensional multicomponent hemodynamics
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1975-1989

Voir la notice de l'article provenant de la source Math-Net.Ru

An overview of various hemodynamic models is given. A model of one-dimensional dynamics of blood as a multicomponent fluid is justified. An initial-boundary value problem is formulated which simulates the flow of blood through a given section of a blood vessel with elastic walls. The transition to Lagrangian variables is made. A result on the global existence of a solution to the problem is formulated.
Keywords: one-dimensional hemodynamics, multicomponent fluid, initial-boundary value problem, flow problem, blood vessel with elastic walls.
Mots-clés : mass Lagrangian variables, global existence
@article{SEMR_2020_17_a107,
     author = {A. E. Mamontov and D. A. Prokudin},
     title = {One-dimensional multicomponent hemodynamics},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1975--1989},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a107/}
}
TY  - JOUR
AU  - A. E. Mamontov
AU  - D. A. Prokudin
TI  - One-dimensional multicomponent hemodynamics
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 1975
EP  - 1989
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a107/
LA  - ru
ID  - SEMR_2020_17_a107
ER  - 
%0 Journal Article
%A A. E. Mamontov
%A D. A. Prokudin
%T One-dimensional multicomponent hemodynamics
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 1975-1989
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a107/
%G ru
%F SEMR_2020_17_a107
A. E. Mamontov; D. A. Prokudin. One-dimensional multicomponent hemodynamics. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1975-1989. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a107/