One-dimensional multicomponent hemodynamics
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1975-1989.

Voir la notice de l'article provenant de la source Math-Net.Ru

An overview of various hemodynamic models is given. A model of one-dimensional dynamics of blood as a multicomponent fluid is justified. An initial-boundary value problem is formulated which simulates the flow of blood through a given section of a blood vessel with elastic walls. The transition to Lagrangian variables is made. A result on the global existence of a solution to the problem is formulated.
Keywords: one-dimensional hemodynamics, multicomponent fluid, initial-boundary value problem, flow problem, blood vessel with elastic walls.
Mots-clés : mass Lagrangian variables, global existence
@article{SEMR_2020_17_a107,
     author = {A. E. Mamontov and D. A. Prokudin},
     title = {One-dimensional multicomponent hemodynamics},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1975--1989},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a107/}
}
TY  - JOUR
AU  - A. E. Mamontov
AU  - D. A. Prokudin
TI  - One-dimensional multicomponent hemodynamics
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 1975
EP  - 1989
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a107/
LA  - ru
ID  - SEMR_2020_17_a107
ER  - 
%0 Journal Article
%A A. E. Mamontov
%A D. A. Prokudin
%T One-dimensional multicomponent hemodynamics
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 1975-1989
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a107/
%G ru
%F SEMR_2020_17_a107
A. E. Mamontov; D. A. Prokudin. One-dimensional multicomponent hemodynamics. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1975-1989. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a107/

[1] T.J. Pedley, The fluid mechanics of large blood vessels, Cambridge University Press, Cambridge etc, 1980 | Zbl

[2] L. Formaggia, A. Veneziani, Reduced and multiscale models for the human cardiovascular system, Politecnico di Milano, Milan, 2003

[3] A. Quarteroni, L. Formaggia, Mathematical modelling and numerical simulation of the cardio–vascular system, Elsevier, Amsterdam, 2004 | MR

[4] L. Euler, Principia pro motu sanguinis per arterias determinando, Euler Archive — All Works, 855, , 1862 https://scholarlycommons.pacific.edu/euler-works/855

[5] Thomas J. R. Hughes, J. Lubliner, “On the one-dimensional theory of blood flow in the larger vessels”, Math. Biosci., 18 (1973), 161–170 | DOI | Zbl

[6] D. Bessems, M. Rutten, F.N. van de Vosse, “A wave propagation model of blood flow in large vessels using an approximate velocity profile function”, J. Fluid Mech., 580 (2007), 145–168 | DOI | MR | Zbl

[7] D. Bessems, C.G. Giannopapa, M.C. Rutten, F.N. van de Vosse, “Experimental validation of a time–domain–based wave propagation model of blood flow in viscoelastic vessels”, J. Biomech., 41 (2008), 284–291 | DOI

[8] R. Raghu, I. Vignon–Clementel, C.A. Figueroa, C. Taylor, “Comparative study of viscoelastic arterial wall models in nonlinear one-dimensional finite element simulations of blood flow”, J. Biomech. Eng., 133:8 (2011), 081003 | DOI | MR

[9] G. Mulder, A. Marzo, A.C.B. Bogaerds, S.C. Coley, P. Rongen, D.R. Hose, F.N. van de Vosse, “Patient-specific modeling of cerebral blood flow geometrical variations in a 1d model”, Cardiovascular Engineering and Technology, 2 (2011), 334–348 | DOI

[10] A.M. Barlukova, A.A. Cherevko, A.P. Chupakhin, “Traveling waves in a one-dimensional model of hemodynamics”, J. Appl. Mech. Tech. Phys., 55:6 (2014), 917–926 | DOI | MR | Zbl

[11] A.E. Mamontov, D.A. Prokudin, “Global unique solvability of the initial-boundary value problem for the equations of one-dimensional polytropic flows of viscous compressible multifluids”, J. Math. Fluid Mech., 21:1 (2019), 9 | DOI | MR | Zbl

[12] A.E. Mamontov, D.A. Prokudin, “Solvability of a problem for the equations of the dynamics of one-temperature mixtures of heat-conducting viscous compressible fluids”, Dokl. Math., 99:3 (2019), 273–276 | DOI | MR | Zbl

[13] S. Ya. Belov, “On the initial-boundary value problems for barotropic motions of a viscous gas in a region with permeable boundaries”, J. Math. Kyoto Univ., 34:2 (1994), 369–389 | MR | Zbl

[14] S.N. Antontsev, A.V. Kazhikhov, V.N. Monakhov, Boundary value problems in mechanics of nonhomogeneous fluids, Studies in Mathematics and its Applications, 22, North-Holland, Amsterdam etc, 1990 | MR | Zbl

[15] V.A. Solonnikov, “The solvability of the initial-boundary value problem for the equations of motion of the viscous compressible fluid”, Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova, 56, 1976, 128–142 | MR | Zbl

[16] V.A. Solonnikov, A.V. Kazhikhov, “Existence theorems for the equations of motion of a compressible viscous fluid”, Ann. Rev. Fluid Mech., 13 (1981), 79–95 | DOI | Zbl