The Cauchy problem for the non-stationary radiative transfer equation with Compton scattering
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1943-1952.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers the initial-boundary-value problem for the radiative transfer equation in an inhomogeneous medium with a collision integral that describes Compton scattering by free electrons. The problem is reduced to abstract Cauchy problem in Banach space. Using the theory of strongly continuous semigroups, well-posedness of the Cauchy problem is proved. Conditions of the operator semigroup stability are found.
Keywords: radiative transfer equation, Compton scattering, Cauchy problem, strongly continuous semigroup.
@article{SEMR_2020_17_a106,
     author = {I. V. Prokhorov and I. P. Yarovenko},
     title = {The {Cauchy} problem for the non-stationary radiative transfer equation with {Compton} scattering},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1943--1952},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a106/}
}
TY  - JOUR
AU  - I. V. Prokhorov
AU  - I. P. Yarovenko
TI  - The Cauchy problem for the non-stationary radiative transfer equation with Compton scattering
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 1943
EP  - 1952
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a106/
LA  - ru
ID  - SEMR_2020_17_a106
ER  - 
%0 Journal Article
%A I. V. Prokhorov
%A I. P. Yarovenko
%T The Cauchy problem for the non-stationary radiative transfer equation with Compton scattering
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 1943-1952
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a106/
%G ru
%F SEMR_2020_17_a106
I. V. Prokhorov; I. P. Yarovenko. The Cauchy problem for the non-stationary radiative transfer equation with Compton scattering. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1943-1952. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a106/

[1] G.V. Fetisov, “X-ray diffraction methods for structural diagnostics of materials: progress and achievements”, Phys. Usp., 63 (2020), 2–32 | DOI

[2] V. Suleimanov, J. Poutanen, K. Werner, “X-ray bursting neutron star atmosphere models using an exact relativistic kinetic equation for Compton scattering”, Astronomy Astrophysics, 545 (2012), A120 | DOI

[3] D.I. Nagirner, J. Poutanen, Single Compton scattering, Astrophysics and Space Physics Reviews, 9, Harwood Academic Publishers, Amsterdam, 1994

[4] I.P. Yarovenko, “The method for solving tomography problem based on the specifics of the Compton scattering”, Vychisl. Tekhnol., 17:6 (2012), 99–109 | Zbl

[5] I.G. Kazantsev, U.L. Olsen, H.F. Poulsen, P.C. Hansen, “A spectral geometric model for Compton single scatter in PET based on the single scatter simulation approximation”, Inverse Probl., 34:2 (2018), 024002 | DOI | MR | Zbl

[6] James Webber, Eric L. Miller, “Compton scattering tomography in translational geometries”, Inverse Probl., 36:2 (2020), 025007 | DOI | MR | Zbl

[7] Yang Zhang, “Recovery of singularities for the weighted cone transform appearing in Compton camera imaging”, Inverse Probl., 36:2 (2020), 025014 | DOI | MR | Zbl

[8] D.S. Anikonov, D.S. Konovalova, “The Kinetic Transport Equation in the case of Compton scattering”, Sib. Math. J., 43:5 (2002), 795–807 | DOI | MR | Zbl

[9] D.S. Anikonov, D.S. Konovalova, “Compton effect in transport theory”, Dokl. Akad. Nauk, Ross. Akad. Nauk, 398:4 (2004), 462–465 | MR | Zbl

[10] D.S. Anikonov, D.S. Konovalova, “The boundary-value problem for the transport equation with purely Compton scattering”, Sib. Math. J., 46:1 (2005), 1–12 | DOI | MR | Zbl

[11] I.P. Yarovenko, “On the solvability of the boundary value problem for the radiation transfer equation with the Compton scattering effect”, Dal'nevost. Mat. Zh., 14:1 (2014), 109–121 | MR | Zbl

[12] I.P. Yarovenko, “Unique solvability of boundary value problem for a polychromatic radiation transfer equation”, Dal'nevost. Mat. Zh., 19:1 (2019), 96–107 | MR | Zbl

[13] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied mathematics science, 44, Springer-Verlag, New-York etc., 1983 | DOI | MR | Zbl

[14] Ph. Clément, H.J.A.M. Heijmans, S. Angenent, C.J. van Duijn, B. de Pagter, One-parameter semigroups, CWI Monographs, 5, North-Holland, Amsterdam etc., 1987 | MR | Zbl

[15] V.S. Vladimirov, Mathematical problems of the uniform-speed theory of transport, Trudy Mat. Inst. Steklov, 61, AN SSSR, M., 1961 | MR

[16] D.S. Anikonov, A.E. Kovtanyuk, I.V. Prokhorov, Transport equation and tomography, VSP, Utrecht-Boston, 2002 | MR | Zbl

[17] I.V. Prokhorov, “Solvability of the initial-boundary value problem for an integro-differential equation”, Sib. Math. J., 53:2 (2012), 301–309 | DOI | MR | Zbl

[18] I.V. Prokhorov, A.A. Sushchenko, “On the well-possessedness of the Cauchy problem for the equation of radiative transfer with Fresnel matching conditions”, Sib. Math. J., 56:4 (2015), 736–745 | DOI | MR | Zbl

[19] I.V. Prokhorov, A.A. Sushchenko, A. Kim, “Initial boundary value problem for the radiative transfer equation with diffusion matching conditions”, J. Appl. Ind. Math., 11:1 (2017), 115–124 | DOI | MR | Zbl

[20] I.V. Prokhorov, “The Cauchy problem for the radiation transfer equation with Fresnel and Lambert matching conditions”, Math. Notes, 105:1 (2019), 80–90 | DOI | MR | Zbl