A contact of two elastic plates connected along a thin rigid inclusion
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1797-1815.

Voir la notice de l'article provenant de la source Math-Net.Ru

A contact of two Kirchhoff—Love plates of the same shape and size is considered. The plates are located in parallel without a gap and are clamped at their outer edges. Those plates are connected to each other along a thin rigid inclusion. Three cases are considered. In the first case it is assumed that a force acts at the contact surface. This force is proportional to the difference between displacements of the contact surfaces points of two plates. In the second case a contact of two plates when that force on a contact surface equals zero is considered. The third case corresponds to an equilibrium problem of the two-layer Kirchhoff—Love plate containing thin rigid inclusion. For all three cases a solvability is studied, a variational and differential formulations of the problem are derived and their equivalence is proved. It is shown that the second and the third problems are limit cases of the first one when the value of the force acting on the contact surface tends to zero or to infinity.
Keywords: Kirchhoff—Love plate, contact problem, thin rigid inclusion, nonpenetration condition, variational inequality.
@article{SEMR_2020_17_a103,
     author = {E. V. Pyatkina},
     title = {A contact of two elastic plates connected along a thin rigid inclusion},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1797--1815},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a103/}
}
TY  - JOUR
AU  - E. V. Pyatkina
TI  - A contact of two elastic plates connected along a thin rigid inclusion
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 1797
EP  - 1815
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a103/
LA  - en
ID  - SEMR_2020_17_a103
ER  - 
%0 Journal Article
%A E. V. Pyatkina
%T A contact of two elastic plates connected along a thin rigid inclusion
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 1797-1815
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a103/
%G en
%F SEMR_2020_17_a103
E. V. Pyatkina. A contact of two elastic plates connected along a thin rigid inclusion. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1797-1815. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a103/

[1] A.M. Khludnev, “On bending an elastic plate with a delaminated thin rigid inclusion”, J. Appl. Ind. Math., 5:4 (2011), 582–594 | DOI | MR | Zbl

[2] A.M. Khludnev, “Shape control of thin rigid inclusions and cracks in elastic bodies”, Arch. Appl. Mech., 83:10 (2013), 1493–1509 | DOI | Zbl

[3] V.V. Shcherbakov, “Existence of an optimal shape for thin rigid inclusions in the Kirchhoff–Love plate”, J. Appl. Ind. Math., 8:1 (2014), 97–105 | DOI | MR | Zbl

[4] E.M. Rudoy, “Shape sensitivity analysis of an equilibrium problem for bodies with a thin rigid inclusion”, J. Math. Sci., 211:6 (2015), 847–862 | DOI | MR | Zbl

[5] T.S. Popova, “The equilibrium problem for a viscoelastic body with a thin rigid inclusion”, Mat. Zamet. SVFU, 21:1 (2014), 47–55 | MR | Zbl

[6] N.P. Lazarev, S. Das, M.P. Grigoryev, “Optimal control of a thin rigid stiffener for a model describing equilibrium of a Timoshenko plate with a crack”, Sib. Electr. Math. Izv., 15 (2018), 1485–1497 | DOI | MR | Zbl

[7] N. Lazarev, G. Semenova, “An optimal size of a rigid thin stiffener reinforcing an elastic two-dimensional body on the outer edge”, J. Optim. Theory Appl., 178:2 (2018), 614–626 | DOI | MR | Zbl

[8] H. Itou, A.M. Khludnev, E.M. Rudoy, A. Tani, “Asymptotic behaviour at a tip of a rigid line inclusion in linearized elasticity”, Z. Angew. Math. Mech., 92:9 (2012), 716–730 | DOI | MR | Zbl

[9] E.M. Rudoy, “On numerical solving a rigid inclusions problem in 2D elasticity”, Z. Angew. Math. Phys., 68:1 (2017), 19 | DOI | MR | Zbl

[10] N.A. Kazarinov, E.M. Rudoy, V.Yu. Slesarenko, V.V. Shcherbakov, “Mathematical and numerical simulation of an elastic body reinforced by a thin elastic inclusion”, Comp. Math. Math. Phys., 58:5 (2018), 761–774 | DOI | MR | Zbl

[11] G.Ya. Popov, Concentration of elastic stresses near punches, cuts, thin inclusions and stiffeners, Nauka, M., 1982 (in Russian)

[12] L.T. Berezhnitskiy, V.V. Panasyuk, N.G. Stashchuk, Interaction of hard linear inclusions and cracks in a deformable body, Naukova dumka, Kiyev, 1983

[13] I.I. Il'ina, V.V. Sil'vestrov, “The problem of a thin interfacial inclusion detached from the medium along one side”, Mech. Solids, 40:3 (2005), 123–133

[14] V.V. Sil'vestrov, Yu.O. Vasil'eva, “Problem of a thin rigid inclusion inserted in an interfacial crack in the vicinity of its tip”, J. Appl. Mech. Tech. Phys., 56:3 (2015), 510–518 | DOI | Zbl

[15] V.V. Sil'vestrov, I.A. Ivanov, “A packet of elastic plates joined along a periodic system of segments”, J. Appl. Mech. Tech. Phys., 42:4 (2001), 731–736 | DOI | Zbl

[16] A.M. Khludnev, “Problem on the contact of two elastic plates”, J. Appl. Math. Mech., 47:1 (1984), 110–115 | DOI | MR | Zbl

[17] A.M. Khludnev, “On modelling elastic bodies with defects”, Sib. Elektron. Mat. Izv., 15 (2018), 153–166 | MR | Zbl

[18] I.V. Fankina, “On equilibrium problem for a two-layer structure in the presence of a defect”, Sib. Elektron. Mat. Izv., 16 (2019), 959–974 | DOI | MR | Zbl

[19] Y. Beneveniste, T. Miloh, “Imperfect soft and stiff interfaces in two-dimensional elasticity”, Mech. of Materials, 33 (2001), 309–323 | DOI

[20] E.M. Rudoy, “Asymptotic modelling of bonded plates by soft thin adhesive layer”, Sib. Elektron. Mat. Izv., 17 (2020), 615–625 | DOI | MR | Zbl

[21] A.I. Furtsev, E.M. Rudoy, “Variational approach to modelling soft and stiff interfaces in the Kirchhoff — Love theory of plates. I”, J. Sol. Str., 202 (2020), 562–572 | DOI

[22] V.V. Bolotin, Yu.N. Novichkov, Mechanics of Multilayered Structures, Mashinostroenie, M., 1980

[23] A.R. Rzhanitsyn, Built-up Bars and Plates, Stroiizdat, M., 1986

[24] Yu.I. Dimitrienko, “Asymptotic theory of multylayer thin plates”, Vestnik Moskov.Gos. Univ. im. Baumana Ser. Estestv Nauki, 3 (2012), 86–99

[25] Yu.I. Dimitrienko, E.A. Gubareva, Yu.V. Yurin, “Variational equations of asymptotic theory of multylayer thin plates”, Vestnik Moskov. Gos. Univ. im. Baumana Ser. Estestv Nauki, 4 (2015), 67–87

[26] E.M. Rudoy, N.A. Kazarinov, V.Yu. Slesarenko, “Numerical simulation of equilibrium of an elastic two-layer structure with a through crack”, Numer. Analys. Appl., 10:1 (2017), 63–73 | DOI | MR

[27] E.V. Pyatkina, “A problem of glueing of two Kirchhoff—Love plate”, Sib. Elektron. Mat. Izv., 16 (2019), 1351–1374 | DOI | MR | Zbl

[28] A.M. Khludnev, Elasticity Theory Problems in Nonsmooth Domains, Fizmatlit, M., 2010

[29] A.M. Khludnev, V.A. Kovtunenko, Analysis of Cracks in Solids, WIT-Press, Boston–Southampton, 2000