Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2020_17_a103, author = {E. V. Pyatkina}, title = {A contact of two elastic plates connected along a thin rigid inclusion}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1797--1815}, publisher = {mathdoc}, volume = {17}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a103/} }
E. V. Pyatkina. A contact of two elastic plates connected along a thin rigid inclusion. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1797-1815. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a103/
[1] A.M. Khludnev, “On bending an elastic plate with a delaminated thin rigid inclusion”, J. Appl. Ind. Math., 5:4 (2011), 582–594 | DOI | MR | Zbl
[2] A.M. Khludnev, “Shape control of thin rigid inclusions and cracks in elastic bodies”, Arch. Appl. Mech., 83:10 (2013), 1493–1509 | DOI | Zbl
[3] V.V. Shcherbakov, “Existence of an optimal shape for thin rigid inclusions in the Kirchhoff–Love plate”, J. Appl. Ind. Math., 8:1 (2014), 97–105 | DOI | MR | Zbl
[4] E.M. Rudoy, “Shape sensitivity analysis of an equilibrium problem for bodies with a thin rigid inclusion”, J. Math. Sci., 211:6 (2015), 847–862 | DOI | MR | Zbl
[5] T.S. Popova, “The equilibrium problem for a viscoelastic body with a thin rigid inclusion”, Mat. Zamet. SVFU, 21:1 (2014), 47–55 | MR | Zbl
[6] N.P. Lazarev, S. Das, M.P. Grigoryev, “Optimal control of a thin rigid stiffener for a model describing equilibrium of a Timoshenko plate with a crack”, Sib. Electr. Math. Izv., 15 (2018), 1485–1497 | DOI | MR | Zbl
[7] N. Lazarev, G. Semenova, “An optimal size of a rigid thin stiffener reinforcing an elastic two-dimensional body on the outer edge”, J. Optim. Theory Appl., 178:2 (2018), 614–626 | DOI | MR | Zbl
[8] H. Itou, A.M. Khludnev, E.M. Rudoy, A. Tani, “Asymptotic behaviour at a tip of a rigid line inclusion in linearized elasticity”, Z. Angew. Math. Mech., 92:9 (2012), 716–730 | DOI | MR | Zbl
[9] E.M. Rudoy, “On numerical solving a rigid inclusions problem in 2D elasticity”, Z. Angew. Math. Phys., 68:1 (2017), 19 | DOI | MR | Zbl
[10] N.A. Kazarinov, E.M. Rudoy, V.Yu. Slesarenko, V.V. Shcherbakov, “Mathematical and numerical simulation of an elastic body reinforced by a thin elastic inclusion”, Comp. Math. Math. Phys., 58:5 (2018), 761–774 | DOI | MR | Zbl
[11] G.Ya. Popov, Concentration of elastic stresses near punches, cuts, thin inclusions and stiffeners, Nauka, M., 1982 (in Russian)
[12] L.T. Berezhnitskiy, V.V. Panasyuk, N.G. Stashchuk, Interaction of hard linear inclusions and cracks in a deformable body, Naukova dumka, Kiyev, 1983
[13] I.I. Il'ina, V.V. Sil'vestrov, “The problem of a thin interfacial inclusion detached from the medium along one side”, Mech. Solids, 40:3 (2005), 123–133
[14] V.V. Sil'vestrov, Yu.O. Vasil'eva, “Problem of a thin rigid inclusion inserted in an interfacial crack in the vicinity of its tip”, J. Appl. Mech. Tech. Phys., 56:3 (2015), 510–518 | DOI | Zbl
[15] V.V. Sil'vestrov, I.A. Ivanov, “A packet of elastic plates joined along a periodic system of segments”, J. Appl. Mech. Tech. Phys., 42:4 (2001), 731–736 | DOI | Zbl
[16] A.M. Khludnev, “Problem on the contact of two elastic plates”, J. Appl. Math. Mech., 47:1 (1984), 110–115 | DOI | MR | Zbl
[17] A.M. Khludnev, “On modelling elastic bodies with defects”, Sib. Elektron. Mat. Izv., 15 (2018), 153–166 | MR | Zbl
[18] I.V. Fankina, “On equilibrium problem for a two-layer structure in the presence of a defect”, Sib. Elektron. Mat. Izv., 16 (2019), 959–974 | DOI | MR | Zbl
[19] Y. Beneveniste, T. Miloh, “Imperfect soft and stiff interfaces in two-dimensional elasticity”, Mech. of Materials, 33 (2001), 309–323 | DOI
[20] E.M. Rudoy, “Asymptotic modelling of bonded plates by soft thin adhesive layer”, Sib. Elektron. Mat. Izv., 17 (2020), 615–625 | DOI | MR | Zbl
[21] A.I. Furtsev, E.M. Rudoy, “Variational approach to modelling soft and stiff interfaces in the Kirchhoff — Love theory of plates. I”, J. Sol. Str., 202 (2020), 562–572 | DOI
[22] V.V. Bolotin, Yu.N. Novichkov, Mechanics of Multilayered Structures, Mashinostroenie, M., 1980
[23] A.R. Rzhanitsyn, Built-up Bars and Plates, Stroiizdat, M., 1986
[24] Yu.I. Dimitrienko, “Asymptotic theory of multylayer thin plates”, Vestnik Moskov.Gos. Univ. im. Baumana Ser. Estestv Nauki, 3 (2012), 86–99
[25] Yu.I. Dimitrienko, E.A. Gubareva, Yu.V. Yurin, “Variational equations of asymptotic theory of multylayer thin plates”, Vestnik Moskov. Gos. Univ. im. Baumana Ser. Estestv Nauki, 4 (2015), 67–87
[26] E.M. Rudoy, N.A. Kazarinov, V.Yu. Slesarenko, “Numerical simulation of equilibrium of an elastic two-layer structure with a through crack”, Numer. Analys. Appl., 10:1 (2017), 63–73 | DOI | MR
[27] E.V. Pyatkina, “A problem of glueing of two Kirchhoff—Love plate”, Sib. Elektron. Mat. Izv., 16 (2019), 1351–1374 | DOI | MR | Zbl
[28] A.M. Khludnev, Elasticity Theory Problems in Nonsmooth Domains, Fizmatlit, M., 2010
[29] A.M. Khludnev, V.A. Kovtunenko, Analysis of Cracks in Solids, WIT-Press, Boston–Southampton, 2000