A class of planar differential systems with explicit expression for two limit cycles
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1588-1597

Voir la notice de l'article provenant de la source Math-Net.Ru

The existence of limit cycles is interesting and very important in applications. It is a key to understand the dynamic of polynomial differential systems. The aim of this paper is to investigate a class of a multi-parameter planar polynomial differential systems. Under some suitable conditions, the existence of two limit cycles, these limit cycles are explicitly given. Some examples are presented in order to illustrate the applicability of our results. algebras.
Keywords: limit cycle, invariant algebraic curve, first integral.
Mots-clés : Riccati equation
@article{SEMR_2020_17_a100,
     author = {Saad Eddine Hamizi and Rachid Boukoucha},
     title = {A class of planar differential systems with explicit expression for two limit cycles},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1588--1597},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a100/}
}
TY  - JOUR
AU  - Saad Eddine Hamizi
AU  - Rachid Boukoucha
TI  - A class of planar differential systems with explicit expression for two limit cycles
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 1588
EP  - 1597
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a100/
LA  - en
ID  - SEMR_2020_17_a100
ER  - 
%0 Journal Article
%A Saad Eddine Hamizi
%A Rachid Boukoucha
%T A class of planar differential systems with explicit expression for two limit cycles
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 1588-1597
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a100/
%G en
%F SEMR_2020_17_a100
Saad Eddine Hamizi; Rachid Boukoucha. A class of planar differential systems with explicit expression for two limit cycles. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1588-1597. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a100/