Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2020_17_a100, author = {Saad Eddine Hamizi and Rachid Boukoucha}, title = {A class of planar differential systems with explicit expression for two limit cycles}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1588--1597}, publisher = {mathdoc}, volume = {17}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a100/} }
TY - JOUR AU - Saad Eddine Hamizi AU - Rachid Boukoucha TI - A class of planar differential systems with explicit expression for two limit cycles JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2020 SP - 1588 EP - 1597 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a100/ LA - en ID - SEMR_2020_17_a100 ER -
%0 Journal Article %A Saad Eddine Hamizi %A Rachid Boukoucha %T A class of planar differential systems with explicit expression for two limit cycles %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2020 %P 1588-1597 %V 17 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a100/ %G en %F SEMR_2020_17_a100
Saad Eddine Hamizi; Rachid Boukoucha. A class of planar differential systems with explicit expression for two limit cycles. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 1588-1597. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a100/
[1] A. Bendjeddou, R. Cheurfa, “On the exact limit cycle for some class of planar differential systems”, Nonlinear differ. equ. appl., 14 (2007), 491–498 | DOI | MR | Zbl
[2] A. Bendjeddou, R. Cheurfa, “Coexistence of algebraic and non-algebraic limit cycles for quintic polynomial differential systems”, Elect. J. of Diff. Equ., 2017:71 (2017), 1–7 | MR | Zbl
[3] R. Benterki, J. Llibre, “Polynomial differential systems with explicit non-algebraic limit cycles”, Elect. J. of Diff. Equ., 2012:78 (2012), 1–6 | MR | Zbl
[4] R. Boukoucha, “Explicit limit cycles of a family of polynomial differential systems”, Elect. J. of Diff. Equ., 2017:217 (2017), 1–7 | MR | Zbl
[5] R. Boukoucha, A. Bendjeddou, “On the dynamics of a class of rational Kolmogorov systems”, J. Nonlinear Math. Phys., 23:1 (2016), 21–27 | DOI | MR | Zbl
[6] R. Boukoucha, “Explicit expression for a first integral for some classes of two-dimensional differential systems”, Siberian Electronic Mathematical Reports, 14 (2017), 903–913 | MR | Zbl
[7] J. Chavarriga, J. Llibre, “Invariant algebraic curves and rational first integrals for planar polynomial vector fields”, J. differential equations, 169:1 (2001), 1–16 | DOI | MR | Zbl
[8] F. Dumortier, J. Llibre, J. Artés, Qualitative Theory of Planar Differential Systems, Universitex, Springer, Berlin, 2006 | MR | Zbl
[9] A. Gasull, H. Giacomini, J. Torregrosa, “Explicit non-algebraic limit cycles for polynomial systems”, J. Comput. Appl. Math., 200 (2007), 448–457 | DOI | MR | Zbl
[10] J. Gin\'{e, “Coexistence of algebraic and non-algebraic limit cycles, explicitly given, using Riccati equations}. Nonlinearity”, M. Grau, 19 (2006), 1939–1950 | MR | Zbl
[11] Bull. Amer. Math. Soc., 8 (1902), 437–479 | DOI | MR | Zbl | Zbl
[12] J. Llibre, Y. Zhao, “Algebraic limit cycles in polynomial systems of differential equations”, J. Phys. A: Math. Theor., 40:47 (2007), 14207–14222 | DOI | MR | Zbl
[13] K. Odani, “The limit cycle of the van der Pol equation is not algebraic”, J. of Diff. Equ, 115 (1995), 146–152 | DOI | MR | Zbl
[14] L. Perko, Differential Equations and Dynamical Systems, Texts in Applied Mathematics, 7, Third edition, Springer-Verlag, New York, 2001 | DOI | MR | Zbl
[15] D. Schlomiuk, “Algebraic particular integrals, integrability and the problem of center”, Trans. Amer. Math. Soc., 338:2 (1993), 799–841 | DOI | MR | Zbl
[16] M. Yahiaoui, R. Boukoucha, “Invariant algebraic curves and the first integral for a class of Kolmogorov systems”, Nonlinear studies, 27:1 (2020), 205–212 | MR