Factoring nonabelian finite groups into two subsets
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 683-689.

Voir la notice de l'article provenant de la source Math-Net.Ru

A group $G$ is said to be factorized into subsets $A_1, A_2,$ $\ldots, A_s\subseteq G$ if every element $g$ in $G$ can be uniquely represented as $g=g_1g_2\ldots g_s$, where $g_i\in A_i$, $i=1,2,\ldots,s$. We consider the following conjecture: for every finite group $G$ and every factorization $n=ab$ of its order, there is a factorization $G=AB$ with $|A|=a$ and $|B|=b$. We show that a minimal counterexample to this conjecture must be a nonabelian simple group and prove the conjecture for every finite group the nonabelian composition factors of which have orders less than $10 000$.
Keywords: factoring of groups into subsets, finite group, finite simple group, maximal subgroups.
@article{SEMR_2020_17_a10,
     author = {R. R. Bildanov and V. A. Goryachenko and A. V. Vasil'ev},
     title = {Factoring nonabelian finite groups into two subsets},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {683--689},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a10/}
}
TY  - JOUR
AU  - R. R. Bildanov
AU  - V. A. Goryachenko
AU  - A. V. Vasil'ev
TI  - Factoring nonabelian finite groups into two subsets
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 683
EP  - 689
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a10/
LA  - en
ID  - SEMR_2020_17_a10
ER  - 
%0 Journal Article
%A R. R. Bildanov
%A V. A. Goryachenko
%A A. V. Vasil'ev
%T Factoring nonabelian finite groups into two subsets
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 683-689
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a10/
%G en
%F SEMR_2020_17_a10
R. R. Bildanov; V. A. Goryachenko; A. V. Vasil'ev. Factoring nonabelian finite groups into two subsets. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 683-689. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a10/

[1] G.M. Bergman, A note on factorizations of finite groups, 2020, arXiv: 2003.12866

[2] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, R.A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985 | MR | Zbl

[3] GAP – Groups, Algorithms, Programming – A System for Computational Discrete Algebra, vers. 4.10.2, The GAP Group, , 2019 http://www.gap-system.org

[4] M.I. Gonzalez Vasco, R. Steinwandt, “Obstacles in two public key cryptosystems based on group factorizations”, Tatra Mt. Math. Publ., 25 (2002), 23–37 | MR | Zbl

[5] M.I. Gonzalez Vasco, M. Rötteler, R. Steinwandt, “On minimal length factorizations of finite groups”, Exp. Math., 12:1 (2003), 1–12 | DOI | MR | Zbl

[6] G. Hajós, “Többmerétű terek befedése kockaráccsal”, Mat. Fiz. Lapok, 45 (1938), 171–190 (in Hungarian)

[7] G. Hajós, “Über einfache und mehrfache Bedeckung des n-dimensionalen Raumes mit einem Würfelgitter”, Math. Zeit., 47 (1942), 427–467 | DOI | MR

[8] E.I. Khukhro, V. D. Mazurov (eds.), Unsolved Problems in Group Theory, The Kourovka Notebook, 19, Sobolev Institute of Mathematics, Novosibirsk, 2018, arXiv: ; see also for the current updates 1401.0300 [math.GR]https://kourovka-notebook.org/ | MR

[9] D.E. Knuth, “Dancing links”, Millennial Perspectives in Computer Science, Proceedings of the 1999 Oxford-Microsoft Symposium in Honour of Sir Tony Hoare (Palgrave, 2000), eds. J. Davies, B. Roscoe, J. Woodcock, 187–214

[10] S.S. Magliveras, A.J. Surkan, “A cryptosystem from logarithmic signatures of finite groups”, Proceedings of the 29th Midwest Symposium on Circuits and Systems, Elsevier Publishing Company, Amsterdam, 1986, 972–975

[11] H. Minkowski, Geometrie der Zahlen, Teubner, Leipzig, 1896 | MR | Zbl

[12] A.D. Sands, “On the factorization on finite groups”, J. London Math. Soc. II, 7 (1974), 627–631 | DOI | MR | Zbl

[13] N. Singhi, N. Singhi, S.S. Magliveras, “Minimal logarithmic signatures for finite groups of Lie type”, Des. Codes Cryptogr., 55:2–3 (2010), 243–260 | DOI | MR | Zbl

[14] S. Szabó, Topics in Factorization of Abelian Groups, Birkhäuser Verlag, Basel, 2004 | MR | Zbl

[15] S. Szabó, A.D. Sands, Factoring Groups into Subsets, CRC Press, Taylor and Francis, New York, 2009 | MR | Zbl

[16] https://mathoverflow.net/questions/177747/factorization-of-a-finite-group-by-two-subsets

[17] https://mathoverflow.net/questions/316262/is-each-finite-group-multifactorizable

[18] http://math.nsc.ru/~vasand/Computations/FactorizationProgram.gap

[19] http://math.nsc.ru/~vasand/Computations/FactorizationLog.txt