Factoring nonabelian finite groups into two subsets
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 683-689

Voir la notice de l'article provenant de la source Math-Net.Ru

A group $G$ is said to be factorized into subsets $A_1, A_2,$ $\ldots, A_s\subseteq G$ if every element $g$ in $G$ can be uniquely represented as $g=g_1g_2\ldots g_s$, where $g_i\in A_i$, $i=1,2,\ldots,s$. We consider the following conjecture: for every finite group $G$ and every factorization $n=ab$ of its order, there is a factorization $G=AB$ with $|A|=a$ and $|B|=b$. We show that a minimal counterexample to this conjecture must be a nonabelian simple group and prove the conjecture for every finite group the nonabelian composition factors of which have orders less than $10 000$.
Keywords: factoring of groups into subsets, finite group, finite simple group, maximal subgroups.
@article{SEMR_2020_17_a10,
     author = {R. R. Bildanov and V. A. Goryachenko and A. V. Vasil'ev},
     title = {Factoring nonabelian finite groups into two subsets},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {683--689},
     publisher = {mathdoc},
     volume = {17},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a10/}
}
TY  - JOUR
AU  - R. R. Bildanov
AU  - V. A. Goryachenko
AU  - A. V. Vasil'ev
TI  - Factoring nonabelian finite groups into two subsets
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2020
SP  - 683
EP  - 689
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a10/
LA  - en
ID  - SEMR_2020_17_a10
ER  - 
%0 Journal Article
%A R. R. Bildanov
%A V. A. Goryachenko
%A A. V. Vasil'ev
%T Factoring nonabelian finite groups into two subsets
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2020
%P 683-689
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2020_17_a10/
%G en
%F SEMR_2020_17_a10
R. R. Bildanov; V. A. Goryachenko; A. V. Vasil'ev. Factoring nonabelian finite groups into two subsets. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 683-689. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a10/