Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2020_17_a10, author = {R. R. Bildanov and V. A. Goryachenko and A. V. Vasil'ev}, title = {Factoring nonabelian finite groups into two subsets}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {683--689}, publisher = {mathdoc}, volume = {17}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a10/} }
TY - JOUR AU - R. R. Bildanov AU - V. A. Goryachenko AU - A. V. Vasil'ev TI - Factoring nonabelian finite groups into two subsets JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2020 SP - 683 EP - 689 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a10/ LA - en ID - SEMR_2020_17_a10 ER -
R. R. Bildanov; V. A. Goryachenko; A. V. Vasil'ev. Factoring nonabelian finite groups into two subsets. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 683-689. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a10/
[1] G.M. Bergman, A note on factorizations of finite groups, 2020, arXiv: 2003.12866
[2] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, R.A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985 | MR | Zbl
[3] GAP – Groups, Algorithms, Programming – A System for Computational Discrete Algebra, vers. 4.10.2, The GAP Group, , 2019 http://www.gap-system.org
[4] M.I. Gonzalez Vasco, R. Steinwandt, “Obstacles in two public key cryptosystems based on group factorizations”, Tatra Mt. Math. Publ., 25 (2002), 23–37 | MR | Zbl
[5] M.I. Gonzalez Vasco, M. Rötteler, R. Steinwandt, “On minimal length factorizations of finite groups”, Exp. Math., 12:1 (2003), 1–12 | DOI | MR | Zbl
[6] G. Hajós, “Többmerétű terek befedése kockaráccsal”, Mat. Fiz. Lapok, 45 (1938), 171–190 (in Hungarian)
[7] G. Hajós, “Über einfache und mehrfache Bedeckung des n-dimensionalen Raumes mit einem Würfelgitter”, Math. Zeit., 47 (1942), 427–467 | DOI | MR
[8] E.I. Khukhro, V. D. Mazurov (eds.), Unsolved Problems in Group Theory, The Kourovka Notebook, 19, Sobolev Institute of Mathematics, Novosibirsk, 2018, arXiv: ; see also for the current updates 1401.0300 [math.GR]https://kourovka-notebook.org/ | MR
[9] D.E. Knuth, “Dancing links”, Millennial Perspectives in Computer Science, Proceedings of the 1999 Oxford-Microsoft Symposium in Honour of Sir Tony Hoare (Palgrave, 2000), eds. J. Davies, B. Roscoe, J. Woodcock, 187–214
[10] S.S. Magliveras, A.J. Surkan, “A cryptosystem from logarithmic signatures of finite groups”, Proceedings of the 29th Midwest Symposium on Circuits and Systems, Elsevier Publishing Company, Amsterdam, 1986, 972–975
[11] H. Minkowski, Geometrie der Zahlen, Teubner, Leipzig, 1896 | MR | Zbl
[12] A.D. Sands, “On the factorization on finite groups”, J. London Math. Soc. II, 7 (1974), 627–631 | DOI | MR | Zbl
[13] N. Singhi, N. Singhi, S.S. Magliveras, “Minimal logarithmic signatures for finite groups of Lie type”, Des. Codes Cryptogr., 55:2–3 (2010), 243–260 | DOI | MR | Zbl
[14] S. Szabó, Topics in Factorization of Abelian Groups, Birkhäuser Verlag, Basel, 2004 | MR | Zbl
[15] S. Szabó, A.D. Sands, Factoring Groups into Subsets, CRC Press, Taylor and Francis, New York, 2009 | MR | Zbl
[16] https://mathoverflow.net/questions/177747/factorization-of-a-finite-group-by-two-subsets
[17] https://mathoverflow.net/questions/316262/is-each-finite-group-multifactorizable
[18] http://math.nsc.ru/~vasand/Computations/FactorizationProgram.gap
[19] http://math.nsc.ru/~vasand/Computations/FactorizationLog.txt