Factoring nonabelian finite groups into two subsets
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 683-689
Voir la notice de l'article provenant de la source Math-Net.Ru
A group $G$ is said to be factorized into subsets $A_1, A_2,$ $\ldots, A_s\subseteq G$ if every element $g$ in $G$ can be uniquely represented as $g=g_1g_2\ldots g_s$, where $g_i\in A_i$, $i=1,2,\ldots,s$. We consider the following conjecture: for every finite group $G$ and every factorization $n=ab$ of its order, there is a factorization $G=AB$ with $|A|=a$ and $|B|=b$. We show that a minimal counterexample to this conjecture must be a nonabelian simple group and prove the conjecture for every finite group the nonabelian composition factors of which have orders less than $10 000$.
Keywords:
factoring of groups into subsets, finite group, finite simple group, maximal subgroups.
@article{SEMR_2020_17_a10,
author = {R. R. Bildanov and V. A. Goryachenko and A. V. Vasil'ev},
title = {Factoring nonabelian finite groups into two subsets},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {683--689},
publisher = {mathdoc},
volume = {17},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2020_17_a10/}
}
TY - JOUR AU - R. R. Bildanov AU - V. A. Goryachenko AU - A. V. Vasil'ev TI - Factoring nonabelian finite groups into two subsets JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2020 SP - 683 EP - 689 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2020_17_a10/ LA - en ID - SEMR_2020_17_a10 ER -
R. R. Bildanov; V. A. Goryachenko; A. V. Vasil'ev. Factoring nonabelian finite groups into two subsets. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 17 (2020), pp. 683-689. http://geodesic.mathdoc.fr/item/SEMR_2020_17_a10/