Behavior of solutions to an inverse problem for a quasilinear parabolic equation
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1393-1409

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we consider the inverse problem with an integral condition by redefinition for a parabolic type equation. The existence of a weak solution of the inverse problem is proved by the Galerkin method.In a bounded domain with a homogeneous Dirichlet condition, sufficient conditions for the destruction of its solution in a finite time are obtained, and also the stability of the solution for the inverse problem with the opposite sign on the nonlinearity of the power type.
Keywords: inverse problems, blowing-up solutions, stability, integral overdetermination condition.
@article{SEMR_2019_16_a99,
     author = {S. E. Aitzhanov and D. T. Zhanuzakova},
     title = {Behavior of solutions to an inverse problem for a quasilinear parabolic equation},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1393--1409},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a99/}
}
TY  - JOUR
AU  - S. E. Aitzhanov
AU  - D. T. Zhanuzakova
TI  - Behavior of solutions to an inverse problem for a quasilinear parabolic equation
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 1393
EP  - 1409
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a99/
LA  - en
ID  - SEMR_2019_16_a99
ER  - 
%0 Journal Article
%A S. E. Aitzhanov
%A D. T. Zhanuzakova
%T Behavior of solutions to an inverse problem for a quasilinear parabolic equation
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 1393-1409
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a99/
%G en
%F SEMR_2019_16_a99
S. E. Aitzhanov; D. T. Zhanuzakova. Behavior of solutions to an inverse problem for a quasilinear parabolic equation. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1393-1409. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a99/