An integrating factor of the Darboux differential systems
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1260-1275

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct the integrating factor of the differential systems of the form $\dot x= x+P_n(x,y), \ \dot y=y+Q_n(x,y)$ where $P_n(x,y)$ and $Q_n(x,y)$ are homogeneous polynomials.
Keywords: polynomial systems, integrating factor, polynomial first integrals, rational first integrals, symmetries.
@article{SEMR_2019_16_a97,
     author = {E. P. Volokitin and V. M. Cheresiz},
     title = {An integrating factor of the {Darboux} differential systems},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1260--1275},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a97/}
}
TY  - JOUR
AU  - E. P. Volokitin
AU  - V. M. Cheresiz
TI  - An integrating factor of the Darboux differential systems
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 1260
EP  - 1275
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a97/
LA  - ru
ID  - SEMR_2019_16_a97
ER  - 
%0 Journal Article
%A E. P. Volokitin
%A V. M. Cheresiz
%T An integrating factor of the Darboux differential systems
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 1260-1275
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a97/
%G ru
%F SEMR_2019_16_a97
E. P. Volokitin; V. M. Cheresiz. An integrating factor of the Darboux differential systems. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1260-1275. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a97/