An integrating factor of the Darboux differential systems
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1260-1275.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct the integrating factor of the differential systems of the form $\dot x= x+P_n(x,y), \ \dot y=y+Q_n(x,y)$ where $P_n(x,y)$ and $Q_n(x,y)$ are homogeneous polynomials.
Keywords: polynomial systems, integrating factor, polynomial first integrals, rational first integrals, symmetries.
@article{SEMR_2019_16_a97,
     author = {E. P. Volokitin and V. M. Cheresiz},
     title = {An integrating factor of the {Darboux} differential systems},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1260--1275},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a97/}
}
TY  - JOUR
AU  - E. P. Volokitin
AU  - V. M. Cheresiz
TI  - An integrating factor of the Darboux differential systems
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 1260
EP  - 1275
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a97/
LA  - ru
ID  - SEMR_2019_16_a97
ER  - 
%0 Journal Article
%A E. P. Volokitin
%A V. M. Cheresiz
%T An integrating factor of the Darboux differential systems
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 1260-1275
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a97/
%G ru
%F SEMR_2019_16_a97
E. P. Volokitin; V. M. Cheresiz. An integrating factor of the Darboux differential systems. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1260-1275. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a97/

[1] A. Dold, Lectures on Algebraic Topology, Springer-Verlag, Berlin–Heidelberg–New York, 1972 | MR | Zbl

[2] L. R. Berrone, “On vanishing set of inverse integrating factor”, Qual. Theory Dyn. Syst., 1:2 (2000), 211–230 | DOI | MR | Zbl

[3] G. Darboux, “Mémoire sur les équations différentielles algébrique du premier ordre et du premier degré (Mélanges)”, Bull. Sci. Math., 1878, 60–96 ; 123–144 ; 151–200 | Zbl

[4] A. Bendjeddou, J. Llibre, T. Salhi, “Dynamics of the polynomial differential systems with homogeneous nonlinearities and a star node”, J. Diff. Equ., 254:8 (2013), 3530–3537 | DOI | MR | Zbl

[5] V. Mazzi, M. Sabatini, “Commutators and linearizations of isochronous centers”, Atti Acad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. Appl., 11:2 (2000), 81–98 | MR | Zbl

[6] E. P. Volokitin, “About uniformly isochronous polynomial systems”, Izvestia RAEN (MMMIU), 5:3 (2001), 22–28 (Russian) | MR

[7] I. A. García, J. Giné, “Generalized cofactors and nonlinear superposition principles”, Applied Mathematical Letters, 16:7 (2003), 1137–1141 | DOI | MR | Zbl

[8] V. V. Ivanov, “An integrating multiplier of a pair of independent Pfaffian forms”, Sobolev Readings, Abstracts (Novosibirsk, 2017) (Russian)

[9] P. J. Olver, Applications of Lie Groups to Differential Equations, Springer-Verlag, New York–Berlin–Heidelberg–Tokyo, 1986 | MR | Zbl

[10] M. Villarini, “Regularity properties of the period function near a centre of planar vector fields”, Nonlenear Analysis, 19:8 (1992), 787–802 | DOI | MR | Zbl

[11] E. P. Volokitin, “Algebraic first integrals of polynomial systems satisfying the Caushy-Riemann conditions”, Qual. Theory Dyn. Sys., 15:2 (2016), 575–596 | DOI | MR | Zbl

[12] J. Chavarriga, H. Giacomini, J. Giné, J. Llibre, “Darboux integrability and the inverse integrating factor”, J. Diff. Equ., 194:1 (2003), 116–139 | DOI | MR | Zbl

[13] A. Ferragut, J. Llibre, “On the remarkable values of the rational first integrals of polynomial vector fields”, J. Diff. Equ., 241:2 (2007), 399–417 | DOI | MR | Zbl

[14] H. Poincaré, “Sur líntegration algébrique des équations différentielles du premier ordre et du premier degré”, Rendiconti del Circolo Matematico di Palermo, 11 (1891), 193–239 ; 5 (1897), 161–191 | DOI | DOI

[15] A. G. Choudhury, P. Guha, “On commuting vector fields and Darboux functions for planar differential equations”, Lobachevskii Journal of Mathematics, 34:3 (2013), 212–226 | DOI | MR | Zbl