Boundary value and extremum problems for generalized Oberbeck--Boussinesq model
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1215-1232

Voir la notice de l'article provenant de la source Math-Net.Ru

Boundary value and extremum problems for a generalized Oberbeck–Boussinesq model are considered under the assumption that the reaction coefficient depends nonlinearly on the substance's concentration. In the case when reaction coefficient and cost functionals are Fréchet differentiable, an optimality system for the extremum problem is obtained. For the quadratic reaction coefficient a local uniqueness of the optimal solution is proved.
Keywords: nonlinear mass transfer model, generalized Oberbeck–Boussinesq model, extremum problem, control problem, optimality system, local uniqueness.
@article{SEMR_2019_16_a96,
     author = {R. V. Brizitskii and Zh. Yu. Saritskaya and R. R. Kravchuk},
     title = {Boundary value and extremum problems for generalized {Oberbeck--Boussinesq} model},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1215--1232},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a96/}
}
TY  - JOUR
AU  - R. V. Brizitskii
AU  - Zh. Yu. Saritskaya
AU  - R. R. Kravchuk
TI  - Boundary value and extremum problems for generalized Oberbeck--Boussinesq model
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 1215
EP  - 1232
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a96/
LA  - en
ID  - SEMR_2019_16_a96
ER  - 
%0 Journal Article
%A R. V. Brizitskii
%A Zh. Yu. Saritskaya
%A R. R. Kravchuk
%T Boundary value and extremum problems for generalized Oberbeck--Boussinesq model
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 1215-1232
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a96/
%G en
%F SEMR_2019_16_a96
R. V. Brizitskii; Zh. Yu. Saritskaya; R. R. Kravchuk. Boundary value and extremum problems for generalized Oberbeck--Boussinesq model. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1215-1232. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a96/