Boundary value and extremum problems for generalized Oberbeck--Boussinesq model
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1215-1232.

Voir la notice de l'article provenant de la source Math-Net.Ru

Boundary value and extremum problems for a generalized Oberbeck–Boussinesq model are considered under the assumption that the reaction coefficient depends nonlinearly on the substance's concentration. In the case when reaction coefficient and cost functionals are Fréchet differentiable, an optimality system for the extremum problem is obtained. For the quadratic reaction coefficient a local uniqueness of the optimal solution is proved.
Keywords: nonlinear mass transfer model, generalized Oberbeck–Boussinesq model, extremum problem, control problem, optimality system, local uniqueness.
@article{SEMR_2019_16_a96,
     author = {R. V. Brizitskii and Zh. Yu. Saritskaya and R. R. Kravchuk},
     title = {Boundary value and extremum problems for generalized {Oberbeck--Boussinesq} model},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1215--1232},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a96/}
}
TY  - JOUR
AU  - R. V. Brizitskii
AU  - Zh. Yu. Saritskaya
AU  - R. R. Kravchuk
TI  - Boundary value and extremum problems for generalized Oberbeck--Boussinesq model
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 1215
EP  - 1232
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a96/
LA  - en
ID  - SEMR_2019_16_a96
ER  - 
%0 Journal Article
%A R. V. Brizitskii
%A Zh. Yu. Saritskaya
%A R. R. Kravchuk
%T Boundary value and extremum problems for generalized Oberbeck--Boussinesq model
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 1215-1232
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a96/
%G en
%F SEMR_2019_16_a96
R. V. Brizitskii; Zh. Yu. Saritskaya; R. R. Kravchuk. Boundary value and extremum problems for generalized Oberbeck--Boussinesq model. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1215-1232. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a96/

[1] G.V. Alekseev, Optimization in stationary problems of heat and mass transfer and magnetohydrodynamics, Nauchnyi Mir, M., 2010

[2] K. Ito, K. Kunish, “Estimation of the convection coefficient in elliptic equations”, Inv. Probl., 14 (1997), 995–1013 | DOI | MR

[3] V.I. Agoshkov, F.P. Minuk, A.S. Rusakov, V.B. Zalesny, “Study and solution of identification problems for nonstationary 2D– and 3D–convection–diffusion–reaction”, Russ. J. Numer. Anal. Math. Mod., 20:1 (2005), 19–43 | DOI | MR | Zbl

[4] G.V. Alekseev, D.A. Tereshko, “On solvability of inverse extremal problems for stationary equations of viscous heat conducting fluid”, J. Inv. Ill-Posed Probl., 6:6 (1998), 521–562 | MR | Zbl

[5] G.V. Alekseev, “Solvability of inverse extremal problems for stationary heat and mass transfer equations”, Sib. Math. J., 42:5 (2001), 811–827 | DOI | MR | Zbl

[6] G.V. Alekseev, “Inverse extremal problems for stationary equations in mass transfer theory”, Comp. Math. Math. Phys., 42:3 (2002), 363–376 | MR | Zbl

[7] G.V. Alekseev, O.V. Soboleva, D.A. Tereshko, “Identification problems for a steady-sate model of mass transfer”, J. Appl. Mech. Tech. Phys., 49:4 (2008), 537–547 | DOI | MR | Zbl

[8] D.A. Tereshko, “Numerical reconstruction of the boundary heat flux for the stationary equations of heat convection”, J. Appl. Ind. Math., 9 (2015), 132–140 | DOI | MR

[9] A.I. Korotkii, D.A. Kovtunov, “Optimal boundary control of a system describing thermal convection”, Proc. Steklov Inst. Math., 272 (2011), S74–S100 | DOI | MR | Zbl

[10] S.G. Pyatkov, “Some classes of inverse problems of determining the source function in convection-diffusion systems”, Dif. Eq., 53:10 (2017), 1352–1363 | DOI | MR | Zbl

[11] G. V. Alekseev, V. A. Levin, D. A. Tereshko, “Optimization analysis of the thermal cloaking problem for a cylindrical body”, Dokl. Phys., 62 (2017), 71–75 | DOI | MR

[12] R.V. Brizitskii, Z.Y. Saritskaya, A.I. Byrganov, “Multiplicative control problems for nonlinear convection-diffusion-reaction equation”, Sib. El. Math, Rep., 13 (2016), 352–360 | MR | Zbl

[13] G.V. Alekseev, R.V. Brizitskii, Z.Y. Saritskaya, “Stability estimates of solutions to extremal problems for a nonlinear convection-diffusion-reaction equation”, J. Appl. Ind. Math., 10:2 (2016), 155–167 | DOI | MR | Zbl

[14] R.V. Brizitskii, Z.Y. Saritskaya, “Stability of solutions to extremum problems for the nonlinear convection–diffusion–reaction equation with the Dirichlet condition”, Comp. Math. Math. Phys., 56:12 (2016), 2011–2022 | DOI | MR | Zbl

[15] R.V. Brizitskii, Z.Y. Saritskaya, “Stability of solutions of control problems for the convection–diffusion–reaction equation with a strong nonlinearity”, Dif. Eq., 53:4 (2017), 485–496 | DOI | MR | Zbl

[16] R.V. Brizitskii, Z.Y. Saritskaya, “Inverse coefficient problems for a non-linear convection-diffusion-reaction equation”, Izv. Math., 82:1 (2018), 14–30 | DOI | MR | Zbl

[17] R.V. Brizitskii, Z.Y. Saritskaya, “Optimization analysis of the inverse coefficient problem for the nonlinear convection-diffusion-reaction equation”, J. Inv. Ill-Posed Probl., 9 (2018), 821–834 | DOI | MR | Zbl

[18] A.E. Kovtanyuk, A.Y. Chebotarev, “Stationary free convection problem with radiative heat exchange”, Dif. Eq., 50 (2014), 1592–1599 | DOI | MR | Zbl

[19] G.V. Grenkin, A.Y. Chebotarev, “A nonhomogeneous nonstationary complex heat transfer problem”, Sib. El. Math, Rep., 12 (2015), 562–576 | MR | Zbl

[20] S.A. Lorca, J.L. Boldrini, “Stationary solutions for generalized Boussinesq models”, J. Dif. Eq., 124:2 (1996), 389–406 | DOI | MR | Zbl

[21] A. Belmiloudi, “Robin–type boundary control problems for the nonlinear Boussinesq type equations”, J. Math. An. Appl., 273:2 (2002), 428–456 | DOI | MR | Zbl

[22] A. Bermudez, R. Munoz-Sola, R. Vazquez, “Analysis of two stationary magnetohydrodynamics systems of equations including Joule heating”, J. Math. An. Appl., 368:2 (2010), 444–468 | DOI | MR | Zbl

[23] M. Ruzicka, V. Shelukhin, M.M. dos Santos, “Steady flows of Cosserat-Bingham fluids”, Math. Meth. Appl. Sc., 40:7 (2017), 2746–2761 | DOI | MR | Zbl

[24] V.V. Shelukhin, “Thermodynamics of two-phase granular fluids”, J. Non-Newtonian Fluid Mech., 262 (2018), 25–37 | DOI | MR

[25] A.E. Mamontov, D.A. Prokudin, “Existence of weak solutions to the three-dimensional problem of steady barotropic motions of mixtures of viscous compressible fluids”, Sib. Math. J., 58:1 (2017), 113–127 | DOI | MR | Zbl

[26] A.E. Mamontov, D.A. Prokudin, “Solvability of unsteady equations of multi-component viscous compressible fluids”, Izv. Math., 82:1 (2018), 140–185 | DOI | MR | Zbl

[27] O.A. Ladyzhenskaya, N.N. Uraltseva, Linear and quasilinear elliptic equations, Academic Press, New York–London, 1968 | MR | Zbl

[28] V. Girault, P.A. Raviart, Finite element methods for Navier-Stokes equations, Theory and algorithms, Springer-Verlag, Berlin, 1986 | MR | Zbl

[29] A.D. Ioffe, V.M. Tikhomirov, Theory of extremal problems, Elsevier, Amsterdam, 1978 | MR