On exact solutions to a heat wave propagation boundary-value problem for a nonlinear heat equation
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1057-1068.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with a nonlinear second order parabolic PDE, which is usually called “the nonlinear heat equation”. We construct and study a particular class of solutions having the form of a heat wave that propagates on a cold (zero) background with finite velocity. The equation degenerates on the front of a heat wave and its order decreases. This fact complicates the study. We prove a new existence and uniqueness theorem for a boundary-value problem with a given heat-wave front in the class of analytical functions. Also, we are looking for exact heat-wave type solutions. The construction of these solutions is reduced to integration of the nonlinear second order ODE with singularity.
Keywords: partial differential equations, nonlinear parabolic heat equation, existence and uniqueness theorem
Mots-clés : exact solution.
@article{SEMR_2019_16_a95,
     author = {A. L. Kazakov},
     title = {On exact solutions to a heat wave propagation boundary-value problem for a nonlinear heat equation},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1057--1068},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a95/}
}
TY  - JOUR
AU  - A. L. Kazakov
TI  - On exact solutions to a heat wave propagation boundary-value problem for a nonlinear heat equation
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 1057
EP  - 1068
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a95/
LA  - ru
ID  - SEMR_2019_16_a95
ER  - 
%0 Journal Article
%A A. L. Kazakov
%T On exact solutions to a heat wave propagation boundary-value problem for a nonlinear heat equation
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 1057-1068
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a95/
%G ru
%F SEMR_2019_16_a95
A. L. Kazakov. On exact solutions to a heat wave propagation boundary-value problem for a nonlinear heat equation. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1057-1068. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a95/

[1] A.A. Samarskii, V.A. Galaktionov, S.P. Kurdyumov, A.P. Mikhailov, Blow-up in quasilinear parabolic equations, Walter de Gruyte, Berlin–New York, 1995 | MR | Zbl

[2] S.N. Antontsev, S.I. Shmarev, Evolution PDEs with nonstandard growth conditions. Existence, uniqueness, localization, blow-up, Atlantis Press, Amsterdam, 2015 | MR | Zbl

[3] J.L. Vazquez, The porous medium equation: mathematical theory, Clarendon Press, Oxford, 2007 | MR | Zbl

[4] A.D. Polyanin, V.F. Zaitsev, Handbook of nonlinear partial differential equations, Chapman and Hall/CRC, Boca Raton–London–New York, 2011 | MR | Zbl

[5] A.L. Kazakov, S.S. Orlov, S.S. Orlov, “Construction and study of exact solutions to a nonlinear heat equation”, Siberian Mathematical Journal, 59:3 (2018), 427–441 | DOI | MR | Zbl

[6] R. Courant, D. Hilbert, Methods of mathematical physics, v. II, Partial differential equations, Interscience, New York, 2008 | MR

[7] M. Yu. Filimonov, L.G. Korzunin, A.F. Sidorov, “Approximate methods for solving nonlinear initial boundary–value problems based on special construction of series”, Rus. J. Numer. Anal. Math. Modelling, 8:2 (1993), 101–125 | DOI | MR | Zbl

[8] M. Yu. Filimonov, “Application of method of special series for solution of nonlinear partial differential equations”, AIP Conference Proceeding, 40 (2014), 218–223 | DOI

[9] A.L. Kazakov, A.A. Lempert, “Existence and uniqueness of the solution of the boundary-value problem for a parabolic equation of unsteady filtration”, Journal of Applied Mechanics and Technical Physics, 54:2 (2013), 251–258 | DOI | MR | Zbl

[10] P.J. Olver, “Direct reduction and differential constraints”, Proceedings of the Royal Society of London. Ser. A, 444:1922 (1994), 509–523 | DOI | MR | Zbl

[11] A.A. Kosov, E.I. Semenov, “Exact solutions of the nonlinear diffusion equation”, Siberian Mathematical Journal, 60:1 (2019), 93–107 | DOI | MR | Zbl

[12] A.L. Kazakov, S.S. Orlov, “On some exact solutions of the nonlinear heat equation”, Trudy Inst. Mat. Mekh. UrO RAN, 22, no. 1, 2016, 112–123 | MR

[13] A.L. Kazakov, P.A. Kuznetsov, L.F. Spevak, “Analytical and numerical construction of heat wave type solutions to the nonlinear heat equation with a source”, Journal of Mathematical Sciences, 239:2 (2019), 111–122 | DOI | MR | Zbl

[14] L.C. Evans, Partial differential equations, American Mathematical Society, Providence, Rhode Island, 2010 | Zbl

[15] P.K. Banerjee, R. Butterfield, Boundary element methods in engineering science, McGraw-Hill Book Company Limited, UK, 1981 | MR | Zbl

[16] A.L. Kazakov, L.F. Spevak, “Numerical and analytical studies of a nonlinear parabolic equation with boundary conditions of a special form”, App. Math. Modelling, 37:10–11 (2013), 6918–6928 | DOI | MR | Zbl

[17] A.L. Kazakov, L.F. Spevak, “An analytical and numerical study of a nonlinear parabolic equation with degeneration for the cases of circular and spherical symmetry”, Appl. Math. Modelling, 40:2 (2016), 1333–1343 | DOI | MR