Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2019_16_a93, author = {I. V. Frankina}, title = {On equilibrium problem for a two-layer structure in the presence of a defect}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {959--974}, publisher = {mathdoc}, volume = {16}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a93/} }
TY - JOUR AU - I. V. Frankina TI - On equilibrium problem for a two-layer structure in the presence of a defect JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2019 SP - 959 EP - 974 VL - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a93/ LA - ru ID - SEMR_2019_16_a93 ER -
I. V. Frankina. On equilibrium problem for a two-layer structure in the presence of a defect. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 959-974. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a93/
[1] G.P. Cherepanov, Mechanics of Brittle Fracture, Nauka, M., 1974 | MR
[2] N.F. Morozov, Mathematical Problems of Crack Theory, Nauka, M., 1984 | MR | Zbl
[3] S.A. Nazarov, B.A. Plamenevsky, Elliptic Problems in Domains with Piecewise Smooth Boundary, Nauka, M., 1991 | MR
[4] A.M. Khludnev, Elasticity Problems in Nonsmooth Domains, Fizmatlit, M., 2010
[5] M. Prechtel, G. Leugering, P. Steinmann, M. Stingl, “Towards optimization of crack resistance of composite materials by adjustment of fiber shapes”, Eng. Fract. Mech., 78:6 (2011), 944–960 | DOI
[6] A. Chambolle, S. Conti, G. Francfort, “Approximation of a brittle fracture energy with a constraint of non-interpenetration”, Arch. Ration. Mech. Anal., 228:3 (2018), 867–889 | DOI | MR | Zbl
[7] D. Knees, A. Schroder, “Global spatial regularity for elasticity models with cracks, contact and other nonsmooth constraints”, Math. Methods Appl. Sci., 35:15 (2012), 1859–1884 | DOI | MR | Zbl
[8] L. Freddi, T. Roubicek, C. Zanini, “Quasistatic delamination of sandwich-like Kirchhoff-Love plates”, J. Elast., 113 (2013), 219–250 | DOI | MR | Zbl
[9] T.S. Popova, “Contact problem for two viscoelastic plates”, Mat. Notes YaGU, 12:2 (2005), 60–92
[10] N.V. Neustroeva, “Rigid inclusion in the contact problem for elastic plates”, J. Appl. Industr. Math., 4:4 (2010), 526–538 | DOI | MR
[11] T.A. Rotanova, “On the statements and solvability of the problems on the contact of two plates containing rigid inclusions”, Sib. Zh. Ind. Mat., 15:2 (2012), 107–118 | MR | Zbl
[12] A.M. Khludnev, A. Tani, “Overlapping domain problems in the crack theory with possible contact between crack faces”, Quarterly Appl. Math., 66:3 (2008), 423–435 | DOI | MR | Zbl
[13] A.M. Khludnev, “On crack problem with overlapping domain”, Z. Angew. Math. Mech., 88:8 (2008), 650–660 | DOI | MR | Zbl
[14] A.M. Khludnev, “On an equilibrium problem for a two-layer elastic body with a crack”, J. Appl. Industr. Math., 7:3 (2013), 370–379 | DOI | MR | Zbl
[15] E.M. Rudoy, N.A. Kazarinov, V.Yu. Slesarenko, “Numerical simulation of the equilibrium of an elastic two-layer structure with a crack”, Num. Anal. Appl., 10:1 (2017), 63–73 | DOI | MR
[16] E.V. Pyatkina, “A contact problem for two plates of the same shape glued along one edge of a crack”, J. Appl. Industr. Math., 12:2 (2018), 334–346 | DOI | MR | Zbl
[17] M.P. Savruk, V.S. Kravets, “Influence of reinforcement pads on distribution stress in cracked plates”, Prikl. Mech., 29:3 (1993), 48–55
[18] A.Yu. Zemlyanova, V.V. Sil'vestrov, “The problem of the reinforcement of a plate with a cutout by a two-dimensional patch”, J. Appl. Math. Mech., 71:1 (2007), 40–51 | DOI | MR | Zbl
[19] Yu.O. Vasil'eva, V.V. Sil'vestrov, “The problem of an interface crack with a rigid patch plate on part of its edge”, J Appl. Math. Mech., 75:6 (2011), 716–730 | DOI | MR | Zbl
[20] A.M. Khludnev, G.R. Leugering, “Optimal control of cracks in elastic bodies with thin rigid inclusions”, Z. Angew. Math. Mech., 91:2 (2011), 125–137 | DOI | MR | Zbl
[21] A. Gaudiello, A.M. Khludnev, “Crack on the boundary of two overlapping domains”, Z. Angew. Math. Phys., 61:2 (2010), 341–356 | DOI | MR | Zbl
[22] E.V. Pyatkina, “Optimal control of the shape of a layer shape in the equilibrium problem of elastic bodies with overlapping domains”, J. Appl. Industr. Math., 10:3 (2016), 435–443 | DOI | MR | Zbl
[23] A.M. Khludnev, “On modeling elastic bodies with defects”, Sib. Electron. Math. Reports, 15:3 (2018), 153–166 | MR | Zbl
[24] A.M. Khludnev, “On thin inclusions in elastic bodies with defects”, Z. Angew. Math. Phys., 70:45 (2019), 45 | DOI | MR | Zbl
[25] A.M. Khludnev, “On thin Timoshenko inclusions in elastic bodies with defects”, Arch. Appl. Mech., 2019 | DOI | MR | Zbl
[26] V.P. Mikhailov, Partial Differential Equations, Nauka, M., 1976 | MR
[27] R. Temam, Mathematical Problems of Plasticity Theory, Nauka, M., 1991 | MR