On equilibrium problem for a two-layer structure in the presence of a defect
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 959-974

Voir la notice de l'article provenant de la source Math-Net.Ru

The equilibrium problem of the structure, which consists of two elastic plates, is considered. It is assumed that the plates are flatly deformed, and the layers are modeled as elastic bodies. Plates are glued along a given line. In addition there is a defect along the gluing line in one of the layers. On the defect faces, nonlinear boundary conditions containing the damage parameter are established. Using the variational approach, the solvability of this problem is proved. In the problem, the passage to the limit is carried out when the damage parameter tends to zero and to infinity. Differential formulations for the corresponding limit problems are obtained. The case of the rigidity of one of the layers tends to infinity is considered; the obtained limit problem is analyzed.
Keywords: two-layer structure, nonpenetration condition, damage parameter, defect, variational inequality.
@article{SEMR_2019_16_a93,
     author = {I. V. Frankina},
     title = {On equilibrium problem for a two-layer structure in the presence of a defect},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {959--974},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a93/}
}
TY  - JOUR
AU  - I. V. Frankina
TI  - On equilibrium problem for a two-layer structure in the presence of a defect
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 959
EP  - 974
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a93/
LA  - ru
ID  - SEMR_2019_16_a93
ER  - 
%0 Journal Article
%A I. V. Frankina
%T On equilibrium problem for a two-layer structure in the presence of a defect
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 959-974
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a93/
%G ru
%F SEMR_2019_16_a93
I. V. Frankina. On equilibrium problem for a two-layer structure in the presence of a defect. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 959-974. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a93/