Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2019_16_a92, author = {G. Abdikalikova and A. E. Mironov}, title = {On exact solutions of a system of quasi-linear equations describing integrable geodesic flows on a surface}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {949--954}, publisher = {mathdoc}, volume = {16}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a92/} }
TY - JOUR AU - G. Abdikalikova AU - A. E. Mironov TI - On exact solutions of a system of quasi-linear equations describing integrable geodesic flows on a surface JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2019 SP - 949 EP - 954 VL - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a92/ LA - ru ID - SEMR_2019_16_a92 ER -
%0 Journal Article %A G. Abdikalikova %A A. E. Mironov %T On exact solutions of a system of quasi-linear equations describing integrable geodesic flows on a surface %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2019 %P 949-954 %V 16 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a92/ %G ru %F SEMR_2019_16_a92
G. Abdikalikova; A. E. Mironov. On exact solutions of a system of quasi-linear equations describing integrable geodesic flows on a surface. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 949-954. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a92/
[1] M. Bialy, A.E. Mironov, “Rich quasi-linear system for integrable geodesic flows on 2-torus”, Discrete and Continuous Dynamical Systems — Series A, 29:1 (2011), 81–90 | DOI | MR | Zbl
[2] M. Bialy, A.E. Mironov, “Cubic and quartic integrals for geodesic flow on 2-torus via system of hydrodynamic type”, Nonlinearity, 24 (2011), 3541–3554 | DOI | MR | Zbl
[3] M.V. Pavlov, S.P. Tsarev, “On Local Description of Two-Dimensional Geodesic Flows with a Polynomial First Integral”, Journal of Physics A: Mathematical and Theoretical, 49:17 (2016), 175302 | DOI | MR | Zbl
[4] S.P. Tsarev, “The geometry of Hamiltonian systems of hydrodynamic type. The generalized hodograph method”, Izv. Akad. Nauk SSSR, Ser. Mat., 54:5 (1990), 1048–1068 | MR | Zbl
[5] Dubrovin B. A., Novikov S. P., “Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory”, Usp. Mat. Nauk, 44:6(270) (1989), 29–98 | MR | Zbl
[6] D. Serre, Systems of conservation laws, Translated from the 1996 French original by I. N. Sneddon, v. 2, Geometric structures, oscillations, and initial-boundary value problems, Cambridge University Press, Cambridge, 2000 | MR | Zbl