On transitive uniform partitions of $F^n$ into binary Hamming codes
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 886-892.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate transitive uniform partitions of the vector space $F^n$ of dimension $n$ over the Galois field $GF(2)$ into cosets of Hamming codes. A partition $P^n= \{H_0,H_1+e_1,\ldots,H_n+e_n\}$ of $F^n$ into cosets of Hamming codes $H_0,H_1,\ldots,H_n$ of length $n$ is said to be uniform if the intersection of any two codes $H_i$ and $H_j$, $i,j\in \{0,1,\ldots,n \}$ is constant, here $e_i$ is a binary vector in $F^n$ of weight $1$ with one in the $i$th coordinate position. For any $n=2^m-1$, $m>4$ we found a class of nonequivalent $2$-transitive uniform partitions of $F^n$ into cosets of Hamming codes.
Keywords: Hamming code, uniform partition into Hamming codes, Reed–Muller code, dual code.
Mots-clés : partition, transitive partition, $2$-transitive partition
@article{SEMR_2019_16_a90,
     author = {F. I. Solov'eva},
     title = {On transitive uniform partitions of $F^n$ into binary {Hamming} codes},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {886--892},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a90/}
}
TY  - JOUR
AU  - F. I. Solov'eva
TI  - On transitive uniform partitions of $F^n$ into binary Hamming codes
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 886
EP  - 892
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a90/
LA  - en
ID  - SEMR_2019_16_a90
ER  - 
%0 Journal Article
%A F. I. Solov'eva
%T On transitive uniform partitions of $F^n$ into binary Hamming codes
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 886-892
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a90/
%G en
%F SEMR_2019_16_a90
F. I. Solov'eva. On transitive uniform partitions of $F^n$ into binary Hamming codes. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 886-892. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a90/

[1] G. Cohen, I. Honkala, A. Lobstein, S. Litsyn, Covering codes, Elsevier, 1998 | MR

[2] T. Etzion, A. Vardy, “On perfect codes and tilings: problems and solutions”, SIAM J. Discrete Math., 11:2 (1998), 205–223 | DOI | MR | Zbl

[3] D. G. Fon-Der-Flaass, “Perfect 2-colorings of a hypercube”, Siberian Math. J., 22:4 (2007), 740–745 | DOI | MR | Zbl

[4] O. Heden, F. I. Solov'eva, “Partitions of $F^n$ into non-parallel Hamming codes”, Adv. Math. Commun., 3:4 (2009), 385–397 | DOI | MR | Zbl

[5] D. S. Krotov, “A partition of the hypercube into maximally nonparallel Hamming codes”, Journal of Combinatorial Designs, 22:4 (2014), 179–187 | DOI | MR | Zbl

[6] F. J. MacWilliams, N. J. A. Sloane, The theory of error-correcting codes, North-Holland Publishing Company, 1977 | MR | Zbl

[7] M. Mollard, “A generalized parity function and its use in the construction of perfect codes”, SIAM J. Alg. Discrete Math., 7:1 (1986), 113–115 | DOI | MR | Zbl

[8] P. R. J. Östergård, “On a hypercube coloring problem”, J. Combin. Theory, Ser. A, 108 (2004), 199–204 | DOI | MR | Zbl

[9] K. T. Phelps, “An enumeration of 1-perfect binary codes”, Australas. J. Comb., 21 (2000), 287–298 | MR | Zbl

[10] F. I. Solov'eva, “Survey on perfect codes”, Mathematical Problems of Cybernetics, 18:2013, 5–34 (in Russian) | MR

[11] F. I. Solov'eva, “On transitive partitions of an $n$-cube into codes”, Probl. of Inform. Transm., 45:1 (2009), 23–31 | DOI | Zbl

[12] F. I. Solov'eva, G. K. Gus'kov, “On construction of vertex-transitive partitions of n-cube into perfect codes”, Journal of Applied and Industrial Math., 5:2 (2011), 84–100 | MR