Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2019_16_a9, author = {I. Yu. Shevchenko}, title = {About effective versions of game theoretical semantics for first-order logic}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {618--637}, publisher = {mathdoc}, volume = {16}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a9/} }
TY - JOUR AU - I. Yu. Shevchenko TI - About effective versions of game theoretical semantics for first-order logic JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2019 SP - 618 EP - 637 VL - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a9/ LA - ru ID - SEMR_2019_16_a9 ER -
I. Yu. Shevchenko. About effective versions of game theoretical semantics for first-order logic. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 618-637. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a9/
[1] J. Hintikka, The Principles of Mathematics Revisited, Cambridge University Press, Cambridge, 1996 | MR | Zbl
[2] D. Nelson, “Constructible falsity”, Journal of Symbolic Logic, 14:1 (1949), 16–26 | DOI | MR | Zbl
[3] S. P. Odintsov, S. O. Speranski, I. Yu. Shevchenko, “Hintikka's independence-friendly logic meets Nelson's realizability”, Studia Logica (First Online: 14.10.2017) | MR
[4] M. J. Osborne, A. Rubinstein, A Course in Game Theory, MIT Press, Cambridge, Massachusetts, 1994 | MR | Zbl
[5] A. L. Mann, G. Sandu, M. Sevenster, Independence-Friendly Logic. A game-theoretic approach, Cambridge University Press, Cambridge, 2011 | MR | Zbl