Matrix stability and instability criteria for some systems of linear delay differential equations
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 876-885.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of stability of some systems of linear delay differential equations is considered. Sufficient conditions of asymptotic stability and instability of the trivial solution expressed in terms of matrices of a special kind are given. The results of the analysis of stability of equilibriums of nonlinear model of epidemic process are presented.
Keywords: delay differential equations, asymptotic stability, instability, matrices of a special kind, nonsingular M-matrix, mathematical models of living systems, epidemic process spread.
@article{SEMR_2019_16_a89,
     author = {N. V. Pertsev},
     title = {Matrix stability and instability criteria for some systems of linear delay differential equations},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {876--885},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a89/}
}
TY  - JOUR
AU  - N. V. Pertsev
TI  - Matrix stability and instability criteria for some systems of linear delay differential equations
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 876
EP  - 885
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a89/
LA  - ru
ID  - SEMR_2019_16_a89
ER  - 
%0 Journal Article
%A N. V. Pertsev
%T Matrix stability and instability criteria for some systems of linear delay differential equations
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 876-885
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a89/
%G ru
%F SEMR_2019_16_a89
N. V. Pertsev. Matrix stability and instability criteria for some systems of linear delay differential equations. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 876-885. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a89/

[1] Z. Lu, W. Wang, “Global stability for two-species Lotka-Volterra systems with delay”, J. Math. Anal. Appl., 208:1 (1997), 277–280 | DOI | MR | Zbl

[2] J. Hofbauer, J.W.H. So, “Diagonal dominance and harmless off-diagonal delays”, Proc. of AMS, 128:9 (2000), 2675–2682 | DOI | MR | Zbl

[3] M. Pitchaimani, C. Monica, “Global stability analysis of HIV-1 infection model with three time delays”, J. Appl. Math. Comput., 48:1–2 (2015), 293–319 | DOI | MR | Zbl

[4] N. V. Pertsev, B. Yu. Pichugin, A. N. Pichugina, “Application of M-Matrices in Studies of Mathematical Models of Living Systems”, Mathematical Biology and Bioinformatics, 13, Suppl. (2018), t104–t131 | DOI

[5] L. E. El'sgol'ts, S. B. Norkin, Introduction to the theory and application of differential equations with deviating arguments, Academic Press, New York–London, 1973 | MR | Zbl

[6] V. B. Kolmanovskiy, V. R. Nosov, Stability and periodic modes of a controlled systems with aftereffect, Nauka, M., 1981 | MR | Zbl

[7] A. Berman, R. J. Plemmons, Nonnegative matrices in the mathematical sciences, Academic Press, New York, 1979 | MR | Zbl

[8] V. V. Voevodin, Yu. A. Kuznetsov, Matrices and Calculations, Nauka, M., 1984 | MR | Zbl

[9] N. V. Pertsev, “Two-sided estimates for solutions to the Cauchy problem for Wazewski linear differential systems with delay”, Siberian Math. J., 54:6 (2013), 1088–1097 | DOI | MR | Zbl

[10] A. Yu. Obolenskiy, “On stability of solutions of Vazewski autonomous systems with delay”, Ukrainian Mathematical Journal, 35 (1983), 574–579 | MR

[11] R. Volz, “Stability Conditions for Systems of Linear Nonautonomous Delay Differential Equations”, J. Math. Anal. Appl., 120:2 (1986), 584–595 | DOI | MR | Zbl

[12] I. Gyori, N. V. Pertsev, “On the stability of Equilibrium States of Functional-Differential Equations of Retarded Type Possessing a Mixed Monotone Property”, Doklady Akademii Nauk SSSR, 297:1 (1987), 23–25

[13] I. Gyori, “Interaction between oscilations and global asymptotic stability in delay differential equations”, Differential and Integral Equations, 3:1 (1990), 181–200 | MR | Zbl

[14] M. A. Lavrent'ev, B. V. Shabat, Methods of the theory of functions of a complex variable, 4-th ed., Nauka, M., 1973 | MR | Zbl

[15] K. K. Avilov, A. A. Romanyukha, “Mathematical modelling of tuberculosis propagation and patient detection”, Automat. Remote Control, 68:9 (2007), 1604–1617 | DOI | MR | Zbl

[16] N. V. Pertsev, “Discrete-continuous Model of Tuberculosis Spread and Control”, Siberian Journal of Industrial Mathematics, 17:3 (2014), 86–97 | MR | Zbl

[17] V. V. Malygina, M. V. Mulyukov, “On Local Stability of a Population Dynamics Model with Three Development Stages”, Russ Math., 4 (2017), 35–42 | MR | Zbl

[18] T. Luzyanina, J. Sieber, K. Engelborghs, G. Samaey, D. Roose, “Numerical bifurcation analysis of mathematical models with time delays with the package DDE-BIFTOOL”, Mathematical Biology and Bioinformatics, 12:2 (2017), 496–520 | DOI

[19] G. V. Demidenko, I. I. Matveeva, “Stability of solutions to delay differential equations with periodic coefficients of linear terms”, Siberian Math. J., 48:5 (2007), 824–836 | DOI | MR | Zbl

[20] V. L. Kharitonov, “Lyapunov functionals and matrices”, Annual Reviews in Control, 34 (2010), 13–20 | DOI | MR

[21] I. V. Medvedeva, A. P. Zhabko, “Synthesis of Razumikhin and Lyapunov–Krasovskii approaches to stability analysis of time-delay systems”, Automatica, 51 (2015), 372–377 | DOI | MR | Zbl