Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2019_16_a89, author = {N. V. Pertsev}, title = {Matrix stability and instability criteria for some systems of linear delay differential equations}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {876--885}, publisher = {mathdoc}, volume = {16}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a89/} }
TY - JOUR AU - N. V. Pertsev TI - Matrix stability and instability criteria for some systems of linear delay differential equations JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2019 SP - 876 EP - 885 VL - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a89/ LA - ru ID - SEMR_2019_16_a89 ER -
%0 Journal Article %A N. V. Pertsev %T Matrix stability and instability criteria for some systems of linear delay differential equations %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2019 %P 876-885 %V 16 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a89/ %G ru %F SEMR_2019_16_a89
N. V. Pertsev. Matrix stability and instability criteria for some systems of linear delay differential equations. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 876-885. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a89/
[1] Z. Lu, W. Wang, “Global stability for two-species Lotka-Volterra systems with delay”, J. Math. Anal. Appl., 208:1 (1997), 277–280 | DOI | MR | Zbl
[2] J. Hofbauer, J.W.H. So, “Diagonal dominance and harmless off-diagonal delays”, Proc. of AMS, 128:9 (2000), 2675–2682 | DOI | MR | Zbl
[3] M. Pitchaimani, C. Monica, “Global stability analysis of HIV-1 infection model with three time delays”, J. Appl. Math. Comput., 48:1–2 (2015), 293–319 | DOI | MR | Zbl
[4] N. V. Pertsev, B. Yu. Pichugin, A. N. Pichugina, “Application of M-Matrices in Studies of Mathematical Models of Living Systems”, Mathematical Biology and Bioinformatics, 13, Suppl. (2018), t104–t131 | DOI
[5] L. E. El'sgol'ts, S. B. Norkin, Introduction to the theory and application of differential equations with deviating arguments, Academic Press, New York–London, 1973 | MR | Zbl
[6] V. B. Kolmanovskiy, V. R. Nosov, Stability and periodic modes of a controlled systems with aftereffect, Nauka, M., 1981 | MR | Zbl
[7] A. Berman, R. J. Plemmons, Nonnegative matrices in the mathematical sciences, Academic Press, New York, 1979 | MR | Zbl
[8] V. V. Voevodin, Yu. A. Kuznetsov, Matrices and Calculations, Nauka, M., 1984 | MR | Zbl
[9] N. V. Pertsev, “Two-sided estimates for solutions to the Cauchy problem for Wazewski linear differential systems with delay”, Siberian Math. J., 54:6 (2013), 1088–1097 | DOI | MR | Zbl
[10] A. Yu. Obolenskiy, “On stability of solutions of Vazewski autonomous systems with delay”, Ukrainian Mathematical Journal, 35 (1983), 574–579 | MR
[11] R. Volz, “Stability Conditions for Systems of Linear Nonautonomous Delay Differential Equations”, J. Math. Anal. Appl., 120:2 (1986), 584–595 | DOI | MR | Zbl
[12] I. Gyori, N. V. Pertsev, “On the stability of Equilibrium States of Functional-Differential Equations of Retarded Type Possessing a Mixed Monotone Property”, Doklady Akademii Nauk SSSR, 297:1 (1987), 23–25
[13] I. Gyori, “Interaction between oscilations and global asymptotic stability in delay differential equations”, Differential and Integral Equations, 3:1 (1990), 181–200 | MR | Zbl
[14] M. A. Lavrent'ev, B. V. Shabat, Methods of the theory of functions of a complex variable, 4-th ed., Nauka, M., 1973 | MR | Zbl
[15] K. K. Avilov, A. A. Romanyukha, “Mathematical modelling of tuberculosis propagation and patient detection”, Automat. Remote Control, 68:9 (2007), 1604–1617 | DOI | MR | Zbl
[16] N. V. Pertsev, “Discrete-continuous Model of Tuberculosis Spread and Control”, Siberian Journal of Industrial Mathematics, 17:3 (2014), 86–97 | MR | Zbl
[17] V. V. Malygina, M. V. Mulyukov, “On Local Stability of a Population Dynamics Model with Three Development Stages”, Russ Math., 4 (2017), 35–42 | MR | Zbl
[18] T. Luzyanina, J. Sieber, K. Engelborghs, G. Samaey, D. Roose, “Numerical bifurcation analysis of mathematical models with time delays with the package DDE-BIFTOOL”, Mathematical Biology and Bioinformatics, 12:2 (2017), 496–520 | DOI
[19] G. V. Demidenko, I. I. Matveeva, “Stability of solutions to delay differential equations with periodic coefficients of linear terms”, Siberian Math. J., 48:5 (2007), 824–836 | DOI | MR | Zbl
[20] V. L. Kharitonov, “Lyapunov functionals and matrices”, Annual Reviews in Control, 34 (2010), 13–20 | DOI | MR
[21] I. V. Medvedeva, A. P. Zhabko, “Synthesis of Razumikhin and Lyapunov–Krasovskii approaches to stability analysis of time-delay systems”, Automatica, 51 (2015), 372–377 | DOI | MR | Zbl