Matrix stability and instability criteria for some systems of linear delay differential equations
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 876-885

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of stability of some systems of linear delay differential equations is considered. Sufficient conditions of asymptotic stability and instability of the trivial solution expressed in terms of matrices of a special kind are given. The results of the analysis of stability of equilibriums of nonlinear model of epidemic process are presented.
Keywords: delay differential equations, asymptotic stability, instability, matrices of a special kind, nonsingular M-matrix, mathematical models of living systems, epidemic process spread.
@article{SEMR_2019_16_a89,
     author = {N. V. Pertsev},
     title = {Matrix stability and instability criteria for some systems of linear delay differential equations},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {876--885},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a89/}
}
TY  - JOUR
AU  - N. V. Pertsev
TI  - Matrix stability and instability criteria for some systems of linear delay differential equations
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 876
EP  - 885
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a89/
LA  - ru
ID  - SEMR_2019_16_a89
ER  - 
%0 Journal Article
%A N. V. Pertsev
%T Matrix stability and instability criteria for some systems of linear delay differential equations
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 876-885
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a89/
%G ru
%F SEMR_2019_16_a89
N. V. Pertsev. Matrix stability and instability criteria for some systems of linear delay differential equations. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 876-885. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a89/