One-dimensional inverse coefficient problems of anisotropic viscoelasticity
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 786-811.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of finding the moduli of elasticity $c_{11}(x_3), c_{12}(x_3), c_{44}(x_3)$, $x_3>0$, occurring in the system of integro-differential viscoelasticity equations for gomogenious anisotropic medium. The density of medium is contant. The matrix kernel $k(t)=diag(k_1,$ $k_2,$ $k_3)(t),$ $t\in [0,T]$ is known. As additional information is the Fourier transform of the first and third component of the displacements vector for $x_3 = 0$. The results are the theorems on the existence of a unique solution of the inverse problems and the theorems of stability.
Keywords: inverse problem, stability, moduli of elasticity, delta function
Mots-clés : kernel.
@article{SEMR_2019_16_a88,
     author = {Zh. D. Totieva},
     title = {One-dimensional inverse coefficient problems of anisotropic viscoelasticity},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {786--811},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a88/}
}
TY  - JOUR
AU  - Zh. D. Totieva
TI  - One-dimensional inverse coefficient problems of anisotropic viscoelasticity
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 786
EP  - 811
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a88/
LA  - ru
ID  - SEMR_2019_16_a88
ER  - 
%0 Journal Article
%A Zh. D. Totieva
%T One-dimensional inverse coefficient problems of anisotropic viscoelasticity
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 786-811
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a88/
%G ru
%F SEMR_2019_16_a88
Zh. D. Totieva. One-dimensional inverse coefficient problems of anisotropic viscoelasticity. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 786-811. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a88/

[1] V.G. Yakhno, Inverse problems for differential equations of elasticity, Nauka, Novosibirsk, 1990 (in Russian) | MR | Zbl

[2] V.G. Yakhno, I. Z. Merazhov, “Direct problems and a one-dimensional inverse problem of electroelasticity for “slow” waves”, Siberian Adv. Math., 10:1 (2000), 87–150 | MR | Zbl

[3] I.V. Bogachev, A.O. Vatul'yan, O.V. Yavruyan, “Identification of the properties of an inhomogeneous electroelastic medium”, Journal of Applied Mathematics and Mechanics, 76:5 (2012), 506–510 | DOI | MR | Zbl

[4] G. Nakamura, G. Uhlmann, “Identification of Lame parameters by boundary observations”, Amer. J. of Math., 115:5 (1993), 1161–1189 | DOI | MR | Zbl

[5] G. Nakamura, G. Uhlmann, “Global uniqueness for an inverse boundary value problems arising in elasticity”, Invent. Math., 118:3 (1994), 457–474 | DOI | MR | Zbl

[6] A. Lorenzi, J.Sh. Ulekova, V.G. Yakhno, “An inverse problem in viscoelasticity”, J. Inv. Ill - posed Prob., 2:2 (1994), 131–164 | MR | Zbl

[7] D.K. Durdiev, “An inverse problem of determining two coefficients for integro-differential equation”, Sib. Zh. Ind. Mat., 12:3 (2009), 28–40 (in Russian) | MR | Zbl

[8] V.G. Romanov, “On the determination of the coefficients in the viscoelasticity equations”, Siberian Math. J., 55:3 (2014), 503–510 | DOI | MR | Zbl

[9] Zh.D. Totieva, “The multidimensional problem of determining the density function for the system of viscoelasticity”, Siberian Electronic Mathematical Reports, 13 (2016), 635–644 (in Russian) | MR | Zbl

[10] Z.D. Totieva, “The problem of determining the piezoelectric module of electroviscoelasticity equation”, Math. Meth. Appl. Sci., 41:16 (2018), 6409–6421 | DOI | MR | Zbl

[11] A. Lorenzi, V. G. Romanov, “Stability estimates for an inverse problem related to viscoelastic media”, J. Inv. Ill - Posed Problems, 14:1 (2006), 57–82 | DOI | MR | Zbl

[12] J. Janno, L. Von Wolfersdorf, “An inverse problem for identification of a time- and space-dependent memory kernel in viscoelasticity”, Inverse Problems, 17:1 (2001), 13–24 | DOI | MR | Zbl

[13] F. Colombo, D. Guidetti, “Some results on the identification of memory kernels”, Oper. Theory: Adv. Appl., 216 (2011), 121–138 | MR

[14] V.G. Romanov, “A two-dimensional inverse problem for the viscoelasticity equation”, Siberian Math. J., 53:6 (2012), 1128–1138 | DOI | MR | Zbl

[15] V.G. Romanov, “Stability estimates for the solution to the problem of determining the kernel of a viscoelastic equation”, J. Appl. Ind. Math., 6:3 (2012), 360–370 | DOI | MR | Zbl

[16] D.K. Durdiev, Zh.D. Totieva, “The problem of determining the one-dimensional kernel of the viscoelasticity equation”, Sib. Zh. Ind. Mat., 16:2 (2013), 72–82 (in Russian) | MR | Zbl

[17] D.K. Durdiev, Z. D. Totieva, “The problem of determining the multidimensional kernel of the viscoelasticity equation”, Vladikavkaz. Mat. Zh., 17:4 (2015), 18–43 (in Russian) | MR

[18] D.K. Durdiev, Zh.Sh. Safarov, “Inverse problem of determining the one-dimensional kernel of the viscoelasticity equation in a bounded domain”, Math. Notes, 97:6 (2015), 867–877 | DOI | MR | Zbl

[19] Zh.D. Tuaeva, “The multidimensional mathematical seismic model with memory”, Studies on Differential Equations and Mathematical Modelling, VNC RAN, Vladikavkaz, 2008, 297–306 (in Russian)

[20] D.K. Durdiev, Inverse Problems for Media with Aftereffects, Turon–Ikbol, Tashkent, 2014 (in Russian)