One-dimensional inverse coefficient problems of anisotropic viscoelasticity
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 786-811

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of finding the moduli of elasticity $c_{11}(x_3), c_{12}(x_3), c_{44}(x_3)$, $x_3>0$, occurring in the system of integro-differential viscoelasticity equations for gomogenious anisotropic medium. The density of medium is contant. The matrix kernel $k(t)=diag(k_1,$ $k_2,$ $k_3)(t),$ $t\in [0,T]$ is known. As additional information is the Fourier transform of the first and third component of the displacements vector for $x_3 = 0$. The results are the theorems on the existence of a unique solution of the inverse problems and the theorems of stability.
Keywords: inverse problem, stability, moduli of elasticity, delta function
Mots-clés : kernel.
@article{SEMR_2019_16_a88,
     author = {Zh. D. Totieva},
     title = {One-dimensional inverse coefficient problems of anisotropic viscoelasticity},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {786--811},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a88/}
}
TY  - JOUR
AU  - Zh. D. Totieva
TI  - One-dimensional inverse coefficient problems of anisotropic viscoelasticity
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 786
EP  - 811
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a88/
LA  - ru
ID  - SEMR_2019_16_a88
ER  - 
%0 Journal Article
%A Zh. D. Totieva
%T One-dimensional inverse coefficient problems of anisotropic viscoelasticity
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 786-811
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a88/
%G ru
%F SEMR_2019_16_a88
Zh. D. Totieva. One-dimensional inverse coefficient problems of anisotropic viscoelasticity. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 786-811. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a88/