Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2019_16_a87, author = {I. I. Matveeva}, title = {On stability of solutions to neutral type systems}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {748--756}, publisher = {mathdoc}, volume = {16}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a87/} }
I. I. Matveeva. On stability of solutions to neutral type systems. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 748-756. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a87/
[1] L.E. El'sgol'ts, S.B. Norkin, Introduction to the Theory and Application of Differential Equations with Deviating Arguments, Academic Press, New York–London, 1973 | MR | Zbl
[2] J.K. Hale, Theory of Functional Differential Equations, Applied Mathematical Sciences, 3, Springer–Verlag, New York–Heidelberg–Berlin, 1977 | DOI | MR | Zbl
[3] D.G. Korenevskii, Stability of Dynamical Systems under Random Perturbations of Parameters. Algebraic Criteria, Naukova Dumka, Kiev, 1989 (Russian) | MR
[4] N.V. Azbelev, V.P. Maksimov, L.F. Rakhmatullina, Introduction to the Theory of Functional Differential Equations: Methods and Applications, Contemporary Mathematics and Its Applications, 3, Hindawi Publishing Corporation, Cairo, 2007 | MR | Zbl
[5] V.B. Kolmanovskii, A.D. Myshkis, Introduction to the Theory and Applications of Functional Differential Equations, Mathematics and its Applications, 463, Kluwer Academic Publishers, Dordrecht, 1999 | MR | Zbl
[6] K. Gu, V.L. Kharitonov, J. Chen, Stability of Time-Delay Systems, Control Engineering, Birkhäuser, Boston, 2003 | MR | Zbl
[7] R.P. Agarwal, L. Berezansky, E. Braverman, A. Domoshnitsky, Nonoscillation Theory of Functional Differential Equations with Applications, Springer, New York–Berlin, 2012 | MR | Zbl
[8] M.I. Gil', Stability of Neutral Functional Differential Equations, Atlantis Studies in Differential Equations, 3, Atlantis Press, Amsterdam, 2014 | DOI | MR | Zbl
[9] Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Mathematics in Science and Engineering, 191, Academic Press, Boston, 1993 | MR | Zbl
[10] T. Erneux, Applied Delay Differential Equations, Surveys and Tutorials in the Applied Mathematical Sciences, 3, Springer, New York, 2009 | MR | Zbl
[11] G.V. Demidenko, I.I. Matveeva, “Stability of solutions to delay differential equations with periodic coefficients of linear terms”, Siberian Math. J., 48:5 (2007), 824–836 | DOI | MR | Zbl
[12] I.I. Matveeva, “Estimates of solutions to a class of systems of nonlinear delay differential equations”, J. Appl. Indust. Math., 7:4 (2013), 557–566 | DOI | MR | Zbl
[13] G.V. Demidenko, I.I. Matveeva, “On estimates of solutions to systems of differential equations of neutral type with periodic coefficients”, Siberian Math. J., 55:5 (2014), 866–881 | DOI | MR | Zbl
[14] G.V. Demidenko, I.I. Matveeva, “Estimates for solutions to a class of time-delay systems of neutral type with periodic coefficients and several delays”, Electron. J. Qual. Theory Differ. Equ., 2015 (2015), 83 | DOI | MR | Zbl
[15] I.I. Matveeva, “On exponential stability of solutions to periodic neutral-type systems”, Siberian Math. J., 58:2 (2017), 264–270 | DOI | MR | Zbl
[16] A.S. Andreev, “The method of Lyapunov functionals in the problem of the stability of functional-differential equations”, Autom. Remote Control, 70:9 (2009), 1438–1486 | DOI | MR | Zbl
[17] E. Fridman, “Tutorial on Lyapunov-based methods for time-delay systems”, European J. Control., 20:6 (2014), 271–283 | DOI | MR | Zbl
[18] V.L. Kharitonov, Time-Delay Systems. Lyapunov Functionals and Matrices, Control Engineering, Birkhauser/Springer, New York, 2013 | MR | Zbl
[19] D.Ya. Khusainov, A.T. Kozhametov, “Convergence of solutions of the neutral type nonautonomous systems”, Russian Math., 50:1 (2006), 65–69 | MR | Zbl
[20] A. Domoshnitsky, M. Gitman, R. Shklyar, “Stability and estimate of solution to uncertain neutral delay systems”, Boundary Value Problems, 2014 (2014), 55, 14 pp. | DOI | MR | Zbl
[21] S. Sh. Alaviani, “A necessary and sufficient condition for delay-independent stability of linear time-varying neutral delay systems”, J. Frankl. Inst., 351:5 (2014), 2574–2581 | DOI | MR | Zbl
[22] R.K. Romanovskii, L.V. Bel'gart, S.M. Dobrovol'skii, A.V. Rogozin, G.A. Trotsenko, Method of Lyapunov Functions for Almost Periodic Systems, Publishing House SB RAS, Novosibirsk, 2015
[23] G.V. Demidenko, I.I. Matveeva, “On stability of solutions to linear systems with periodic coefficients”, Siberian Math. J., 42:2 (2001), 282–296 | DOI | MR | Zbl
[24] R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 2013 | MR | Zbl