Boundary value problem for a multidinensional system of equations with Riemann--Liouvile fractional derivatives
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 732-747.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper а boundary-value problem for a multidimensional system of partial differential equations with fractional derivatives in Riemann–Liouville sense with constant coefficients is studied in a rectangular domain. The existence and uniqueness theorem for the solution of the boundary value problem is proved. The solution is constructed in explicit form in terms of the Wright function of the matrix argument.
Keywords: system of partial differential equations, fractional derivatives, boundary value problem, fundamental solution, Wright's function of the matrix argument.
@article{SEMR_2019_16_a86,
     author = {M. O. Mamchuev},
     title = {Boundary value problem for a multidinensional system of equations with {Riemann--Liouvile} fractional derivatives},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {732--747},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a86/}
}
TY  - JOUR
AU  - M. O. Mamchuev
TI  - Boundary value problem for a multidinensional system of equations with Riemann--Liouvile fractional derivatives
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 732
EP  - 747
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a86/
LA  - ru
ID  - SEMR_2019_16_a86
ER  - 
%0 Journal Article
%A M. O. Mamchuev
%T Boundary value problem for a multidinensional system of equations with Riemann--Liouvile fractional derivatives
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 732-747
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a86/
%G ru
%F SEMR_2019_16_a86
M. O. Mamchuev. Boundary value problem for a multidinensional system of equations with Riemann--Liouvile fractional derivatives. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 732-747. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a86/

[1] A. M. Nakhushev, Fractional calculus and its applications, Fizmatlit, M., 2003 (In Russian) | Zbl

[2] Ph. Clement, G. Gripenberg, S-O. Londen, “Schauder estimates for equations with fractional derivatives”, Trans. of the Amer. Math. Soc., 352:5 (2000), 2239–2260 | DOI | MR | Zbl

[3] E. M. Wright, “On the coefficients of power series having exponential singularities”, J. London Math. Soc., 8:29 (1933), 71–80 | DOI | MR | Zbl

[4] E. M. Wright, “The asymptotic expansion of the generalized Bessel function”, Proc. London Math. Soc. Ser. II, 38 (1935), 257–270 | DOI | MR

[5] Ph. Clement, G. Gripenberg, S-O. Londen, “Holder regularity for a linear fractional evolution equation”, Progr. Nonlinear Differ. Equat. and Their Appl., 35 (1999), 62–82 | MR | Zbl

[6] A. V. Pskhu, “Solution of a boundary value problem for a fractional partial differential equation”, Differential Equation, 39:8 (2003), 1092–1099 (In Russian) | DOI | MR | Zbl

[7] A. V. Pskhu, Fractional partial differential equations, Nauka, M., 2005 (In Russian) | MR | Zbl

[8] M. O. Mamchuev, “A boundary value problem for a first-order equation with a partial derivative of a fractional order with variable coefficients”, Reports of Circassian International Academy of Sciences, 11:1 (2009), 32–35 (In Russian) | MR

[9] M. O. Mamchuev, “Cauchy problem in non-local statement for first order equation with partial derivatives of fractional order with variable coefficients”, Reports of Circassian International Academy of Sciences, 11:2 (2009), 21–24 (In Russian)

[10] M. O. Mamchuev, Boundary value problems for equations and systems with the partial derivatives of fractional order, Publishing house KBSC of RAS, Nalchik, 2013 (In Russian)

[11] A. V. Pskhu, “Boundary value problem for a multidimensional fractional partial differential equation”, Differential Equation, 47:3 (2011), 382–392 (In Russian) | DOI | MR | Zbl

[12] M. O. Mamchuev, “Boundary value problem for a system of fractional partial differential equations”, Differential Equations, 44:12 (2008), 1737–1749 | DOI | MR | Zbl

[13] M. O. Mamchuev, “Boundary value problem for a linear system of equations with the partial derivatives of fractional order”, Chelyabinsk Physical and Mathematical Journal, 2:3 (2017), 295–311 (In Russian) | MR

[14] R. Gorenflo, Yu. Luchko, F. Mainardi, “Analytical properties and applications of the Wright function”, Fractional Calculus and Applied Analysis, 2:4 (1999), 383–414 | MR | Zbl

[15] I. Podlubny, Fractional differential equations, Acad. press, New-York, 1999 | MR | Zbl