Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2019_16_a85, author = {A. I. Kozhanov and E. E. Macievskaya}, title = {Degenerating parabolic equations with a variable direction of evolution}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {718--731}, publisher = {mathdoc}, volume = {16}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a85/} }
TY - JOUR AU - A. I. Kozhanov AU - E. E. Macievskaya TI - Degenerating parabolic equations with a variable direction of evolution JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2019 SP - 718 EP - 731 VL - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a85/ LA - ru ID - SEMR_2019_16_a85 ER -
A. I. Kozhanov; E. E. Macievskaya. Degenerating parabolic equations with a variable direction of evolution. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 718-731. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a85/
[1] G. Fichera, “On a Unified Theory of Boundary Value Problems for Elliptic-Parabolic Equations of Second Orde”, Boundary Problems. Differential Equations, Univ. of Wisconsin Press. Madison, Wisconsin, 1960, 97–120 | MR | Zbl
[2] O.A. Oleinik, E.V. Radkevich, Second-Order Equations with Nonnegative Characteristic Form, Business Media, 2012 | MR
[3] V.N. Vragov, Kraevye Zadachi dlya Neklassicheskih Uravneniy Matematicheskoy Fiziki, Novosibirskiy Universitet, Novosibirsk, 1983
[4] I.E. Egorov, V.E. Fedorov, Neklassicheskie Uravneniya Matematicheskoy Fiziki Vysokogo Poryadka, Vychisl. Tsentr SO RAN, Novosibirsk, 1995
[5] I.E. Egorov, V.E. Fedorov, I.M. Tikhonova, E.S. Efimova, Metod Galerkina dlya Neklassicheskih Uravneniy Matematicheskoy Fiziki, VIII, Mezhdunarodnaya Konferentsyya po Matematicheskomu Modelirovaniyu, Tezisy dokl. (Yakutsk, 2017), 11
[6] I.E. Egorov, V.E. Fedorov, I.M. Tikhonova, E.S. Efimova, “The Galerkin method for nonclassical equations of mathematical physics”, AIP Conference Proceedings, 1907, 2017, 020011 | DOI
[7] A.I. Kozhanov, “Kraevye Zadachi dlya Ultraparabolicheskih i Kvasiultraparabolicheskih Uravneniy s Menyayuschimsya Napravleniem Evolutsyi”, Itogi Nauki i Tehniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskiye Obzory, 149, 2018, 56–63
[8] A.I. Kozhanov, G.A. Lukina, “Nonlocal Boundary Value Problems with Partially Integral Conditions for Degenerate Differential Equations with Multiple Characteristics”, Journal of Mathematical Sciences, 237:4 (2019), 549–562 | DOI | MR
[9] S.S. Sobolev, Some Applications of Functional Analysis in Mathematical Physics, Translations of Mathematical Monographs, 90, American Mathematical Society, Providence, RI, 1991 | MR | Zbl
[10] O.A. Ladyzhenskaia, V. A. Solonnikov, N.N. Ural'tseva, Linear and Quasi-linear Equations of Parabolic Type, Translations of Mathematical Monographs, 23, American Mathematical Society, Providence, RI, 1968 | DOI | MR | Zbl
[11] O.V. Besov, V.P. Il'in, S.M. Nikol'skii, Integral Representations of Functions and Imbedding Theorems, Scripta Series in Mathematics, V.H. Winston Sons, Washington, D.C., 1979 | MR | Zbl
[12] O.A. Ladyzhenskaia, N.N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Mathematics in Science and Engineering, 46, Academic Press, New York–London, 1968 | MR | Zbl
[13] V.A. Trenogin, Funktsyanalnyi Analiz, Nauka, M., 1980 | Zbl
[14] H. Triebel, Interpolation Theory. Function Spaces. Differential Operators, Deutscher Verlag des Wissenschaften, Berlin, 1978 | MR | Zbl
[15] V.B. Shakhmurov, “Separable anisotropic differential operators and applications”, J. of Math. Analysis and Applications, 327:2 (2007), 1182–1201 | DOI | MR | Zbl