Degenerating parabolic equations with a variable direction of evolution
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 718-731

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of the paper is to study the solvability in the classes of regular solutions of boundary value problems for differential equations $$ \varphi(t)u_t-\psi(t)\Delta u+c(x,t)u=f(x,t)\quad (x\in\Omega\subset \mathbb{R}^n,\quad 0). $$ A feature of these equations is that the function $\varphi (t)$ in them can arbitrarily change the sign on the segment $[0, T]$, while the function $\psi (t)$ is nonnegative for $t \in [0, T]$. For the problems under consideration, we prove existence and uniqueness theorems.
Keywords: degenerate parabolic equations, boundary value problems, regular solutions, uniqueness.
Mots-clés : variable direction of evolution, existence
@article{SEMR_2019_16_a85,
     author = {A. I. Kozhanov and E. E. Macievskaya},
     title = {Degenerating parabolic equations with a variable direction of evolution},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {718--731},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a85/}
}
TY  - JOUR
AU  - A. I. Kozhanov
AU  - E. E. Macievskaya
TI  - Degenerating parabolic equations with a variable direction of evolution
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 718
EP  - 731
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a85/
LA  - ru
ID  - SEMR_2019_16_a85
ER  - 
%0 Journal Article
%A A. I. Kozhanov
%A E. E. Macievskaya
%T Degenerating parabolic equations with a variable direction of evolution
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 718-731
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a85/
%G ru
%F SEMR_2019_16_a85
A. I. Kozhanov; E. E. Macievskaya. Degenerating parabolic equations with a variable direction of evolution. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 718-731. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a85/