Global estimates and solvability of the regularized problem of the three-dimensional unsteady motion of a viscous compressible heat-conductive multifluid
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 547-590.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the initial-boundary value problem which describes unsteady motions of a viscous compressible heat-conducting multifluid in a bounded three-dimensional domain. Viscosity matrices which characterize viscous friction inside and between the multifluid constituents are supposed to have a general form (except the requirement of positive definiteness). The regularized boundary value problem is formulated and its global solvability is proved.
Keywords: global existence theorem, unsteady boundary value problem, three-dimensional flow, homogeneous mixture with multiple velocities and one temperature, heat-conductive fluid.
Mots-clés : viscous compressible fluid
@article{SEMR_2019_16_a84,
     author = {A. E. Mamontov and D. A. Prokudin},
     title = {Global estimates and solvability of the regularized problem of the three-dimensional unsteady motion of a viscous compressible  heat-conductive multifluid},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {547--590},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a84/}
}
TY  - JOUR
AU  - A. E. Mamontov
AU  - D. A. Prokudin
TI  - Global estimates and solvability of the regularized problem of the three-dimensional unsteady motion of a viscous compressible  heat-conductive multifluid
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 547
EP  - 590
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a84/
LA  - ru
ID  - SEMR_2019_16_a84
ER  - 
%0 Journal Article
%A A. E. Mamontov
%A D. A. Prokudin
%T Global estimates and solvability of the regularized problem of the three-dimensional unsteady motion of a viscous compressible  heat-conductive multifluid
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 547-590
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a84/
%G ru
%F SEMR_2019_16_a84
A. E. Mamontov; D. A. Prokudin. Global estimates and solvability of the regularized problem of the three-dimensional unsteady motion of a viscous compressible  heat-conductive multifluid. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 547-590. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a84/

[1] S. Agmon, A. Douglis, L. Nirenberg, “Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I”, Comm. Pure Appl. Math., 12 (1959), 623–727 | DOI | MR | Zbl

[2] S. N. Antontsev, A. V. Kazhikhov, V. N. Monakhov, Boundary value problems in mechanics of nonhomogeneous fluids, Studies in Mathematics and its Applications, 22, North-Holland Publishing Co., Amsterdam, 1990 | MR | Zbl

[3] D. Bresch, V. Giovangigli, E. Zatorska, “Two-velocity hydrodynamics in Fluid Mechanics. Part I: Well posedness for zero Mach number systems”, J. Math. Pures Appl., 104:4 (2015), 762–800 | DOI | MR | Zbl

[4] D. Bresch, B. Desjardins, E. Zatorska, “Two-velocity hydrodynamics in Fluid Mechanics. Part II: Existence of global k-entropy solutions to compressible Navier-Stokes system with degenerate viscosities”, J. Math. Pures Appl., 104:4 (2015), 801–836 | DOI | MR | Zbl

[5] E. B. Bykhovskii, N. V. Smirnov, “Orthogonal decomposition of the space of vector functions square-summable on a given domain, and the operators of vector analysis”, Trudy Mat. Inst. Steklov, 59, 1960, 5–36 (in Russian) | MR

[6] T. Cazenave, A. Haraux, An introduction to semilinear evolution equations, Clarendon Press, Oxford, 1998 | MR | Zbl

[7] E. Feireisl, “On weak solutions to a diffuse interface model of a binary mixture of compressible fluids”, Discrete and Continuous Dynamical Systems. Series S, 9:1 (2016), 173–183 | DOI | MR | Zbl

[8] E. Feireisl, H. Petzeltova, K. Trivisa, “Multicomponent reactive flows: Global-in-time existence for large data”, Communications on Pure and Applied Analysis, 7:5 (2008), 1017–1047 | DOI | MR | Zbl

[9] E. Feireisl, Dynamics of viscous compressible fluids, Oxford University Press, Oxford, 2004 | MR | Zbl

[10] E. Feireisl, A. Novotny, Singular limits in thermodynamics of viscous fluids, Advances in Mathematical Fluid Mechanics, Birkhauser, Basel, 2009 | MR | Zbl

[11] J. Frehse, S. Goj, J. Malek, “On a Stokes-like system for mixtures of fluids”, SIAM J. Math. Anal., 36:4 (2005), 1259–1281 | DOI | MR | Zbl

[12] J. Frehse, S. Goj, J. Malek, “A uniqueness result for a model for mixtures in the absence of external forces and interaction momentum”, Appl. Math., 50:6 (2005), 527–541 | DOI | MR | Zbl

[13] J. Frehse, W. Weigant, “On quasi-stationary models of mixtures of compressible fluids”, Appl. Math., 53:4 (2008), 319–345 | DOI | MR | Zbl

[14] V. Giovangigli, M. Pokorny, E. Zatorska, “On the steady flow of reactive gaseous mixture”, Analysis (Berlin), 35:4 (2015), 319–341 | MR | Zbl

[15] A. V. Kazhikhov, A. N. Petrov, “Well-posedness of the initial-boundary value problem for a model system of equations of a multicomponent mixture”, Dinamika Sploshnoy Sredy, 35 (1978), 61–73 (in Russian) | MR

[16] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type, American Mathematical Society, Providence, 1968 | MR

[17] A. E. Mamontov, D. A. Prokudin, “Viscous compressible multi-fluids: modeling and multi-D existence”, Methods and Applications of Analysis, 20:2 (2013), 179–195 | DOI | MR

[18] A. E. Mamontov, D. A. Prokudin, “Solubility of a stationary boundary-value problem for the equations of motion of a one-temperature mixture of viscous compressible heat–conducting fluids”, Izvestiya: Mathematics, 78:3 (2014), 554–579 | DOI | MR | Zbl

[19] A. E. Mamontov, D. A. Prokudin, “Solvability of the regularized steady problem of the spatial motions of multicomponent viscous compressible fluids”, Siberian Math. J., 57:6 (2016), 1044–1054 | DOI | MR | Zbl

[20] A. E. Mamontov, D. A. Prokudin, “Solubility of steady boundary value problem for the equations of polytropic motion of multicomponent viscous compressible fluids”, Siberian Electr. Math. Reports, 13 (2016), 664–693 (in Russian) | MR | Zbl

[21] A. E. Mamontov, D. A. Prokudin, “Solubility of initial boundary value problem for the equations of polytropic motion of multicomponent viscous compressible fluids”, Siberian Electr. Math. Reports, 13 (2016), 541–583 (in Russian) | MR | Zbl

[22] A. E. Mamontov, D. A. Prokudin, “Viscous compressible homogeneous multi-fluids with multiple velocities: barotropic existence theory”, Siberian Electr. Math. Reports, 14 (2017), 388–397 | MR | Zbl

[23] A. E. Mamontov, D. A. Prokudin, “Existence of weak solutions to the three-dimensional problem of steady barotropic motions of mixtures of viscous compressible fluids”, Siberian Math. J., 58:1 (2017), 113–127 | DOI | MR | Zbl

[24] A. E. Mamontov, D. A. Prokudin, “Global solvability of 1D equations of viscous compressible multi-fluids”, J. of Physics: Conference Series, 894 (2017), 012059 | DOI

[25] A. E. Mamontov, D. A. Prokudin, “Modeling viscous compressible barotropic multi-fluid flows”, J. of Physics: Conference Series, 894 (2017), 012058 | DOI | MR

[26] A. E. Mamontov, D. A. Prokudin, “Unique solvability of initial-boundary value problem for one-dimensional equa-tions of polytropic flows of multicomponent viscous compressible fluids”, Siberian Electr. Math. Reports, 15 (2018), 631–649 | MR

[27] A. E. Mamontov, D. A. Prokudin, “Solubility of unsteady equations of multi-component viscous compressible fluids”, Izvestiya: Mathematics, 82:1 (2018), 140–185 | DOI | MR | Zbl

[28] A. E. Mamontov, D. A. Prokudin, “Local solvability of initial-boundary value problem for one-dimensional equations of polytropic flows of viscous compressible multifluids”, J. of Math. Sciences, 231:2 (2018), 227–242 | DOI | MR

[29] A. E. Mamontov, D. A. Prokudin, “Global unique solvability of the initial-boundary value problem for the equations of one-dimensional polytropic flows of viscous compressible multifluids”, J. Math. Fluid Mech., 21:1 (2019), 9 | DOI | MR | Zbl

[30] P. B. Mucha, M. Pokorny, E. Zatorska, “Heat-conducting, compressible mixtures with multicomponent diffusion: construction of a weak solution”, SIMA, 47:5 (2015), 3747–3797 | DOI | MR | Zbl

[31] P. B. Mucha, M. Pokorny, E. Zatorska, “Chemically reacting mixtures in terms of degenerated parabolic setting”, J. Math. Phys., 54 (2013) | DOI | MR | Zbl

[32] R. I. Nigmatulin, Dynamics of multiphase media, v. 1, Hemisphere, N.Y., 1990

[33] L. Nirenberg, Topics in nonlinear functional analysis, Courant Institute of Mathematical Sciences, New York, 1974 | MR | Zbl

[34] A. Novotný, I. Straškraba, Introduction to the mathematical theory of compressible flow, Oxford Lecture Series in Mathematics and Its Applications, 27, Oxford University Press, Oxford, 2004 | MR | Zbl

[35] A. N. Petrov, “Well-posedness of initial-boundary value problems for one-dimensional equations of interpenetrating motion of perfect gases”, Dinamika Sploshnoy Sredy, 56 (1982), 105–121 (in Russian) | MR

[36] D. A. Prokudin, “Unique solvability of initial-boundary value problem for a model system of equations for the polytropic motion of a mixture of viscous compressible fluids”, Siberian Electr. Math. Reports, 14 (2017), 568–585 (in Russian) | MR | Zbl

[37] D. A. Prokudin, “Global solvability of the initial boundary value problem for a model system of one-dimensional equations of polytropic flows of viscous compressible fluid mixtures”, J. of Physics: Conference Series, 894 (2017), 012076 | DOI | MR

[38] D. A. Prokudin, M. V. Krayushkina, “Solvability of a stationary boundary value problem for a model system of the equations of barotropic motion of a mixture of compressible viscous fluids”, Journal of Applied and Industrial Mathematics, 10:3 (2016), 417–428 | DOI | MR | Zbl

[39] K. L. Rajagopal, L. Tao, Mechanics of mixtures, Series on Advances in Mathematics for Applied Sciences, 35, World Scientific, River Edge, NJ, 1995 | MR | Zbl

[40] V. A. Solonnikov, “Estimates in $L_p$ of solutions of elliptic and parabolic systems”, Trudy Mat. Inst. Steklov., 102, 1967, 137–160 (in Russian) | MR

[41] E. Zatorska, “On the flow of chemically reacting gaseous mixture”, J. Differential Equations, 253 (2012), 3471–3500 | DOI | MR | Zbl