Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2019_16_a83, author = {T. V. Sazhenkova and S. A. Sazhenkov}, title = {Kaplan's penalty operator in approximation of a diffusion-absorption problem with a one-sided constraint}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {236--248}, publisher = {mathdoc}, volume = {16}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a83/} }
TY - JOUR AU - T. V. Sazhenkova AU - S. A. Sazhenkov TI - Kaplan's penalty operator in approximation of a diffusion-absorption problem with a one-sided constraint JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2019 SP - 236 EP - 248 VL - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a83/ LA - en ID - SEMR_2019_16_a83 ER -
%0 Journal Article %A T. V. Sazhenkova %A S. A. Sazhenkov %T Kaplan's penalty operator in approximation of a diffusion-absorption problem with a one-sided constraint %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2019 %P 236-248 %V 16 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a83/ %G en %F SEMR_2019_16_a83
T. V. Sazhenkova; S. A. Sazhenkov. Kaplan's penalty operator in approximation of a diffusion-absorption problem with a one-sided constraint. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 236-248. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a83/
[1] S.N. Antontsev, J.I. Diaz, S. Shmarev, Energy Methods for Free Boundary Problems. Applications to Nonlinear PDEs and Fluid Mechanics, Birkhäuser, Boston, 2002 | MR | Zbl
[2] S.N. Antontsev, S. Shmarev, Evolution PDEs with Nonstandard Growth Conditions: Existence, Uniqueness, Localization, Blow-up, Atlantis Press, Paris, 2015 | MR | Zbl
[3] C. Baiocci, V.V. Pukhnachev, “Problems with one-sided constraints for Navier–Stokes equations and the dynamic contact angle”, J. Appl. Mech. Tech. Phys., 31:2 (1990), 185–197 | DOI | MR
[4] A.Yu. Chebotarev, “Variational inequalities for Navier–Stokes type operators and one-sided problems for equations of viscous heat-conducting fluids”, Math. Notes, 70:1–2 (2001), 264–274 | DOI | MR | Zbl
[5] J. Dieudonné, Foundations of Modern Analysis, Pure and Applied Mathematics, X, Academic Press, New York–London, 1960 | MR | Zbl
[6] I. Ekeland, R. Témam, Convex analysis and variational problems, Classics in Applied Mathematics, 28, SIAM, 1999 | MR
[7] R. Glowinski, J.-L. Lions, R. Tremolier, Numerical Analysis of Variational Inequalities, Studies in Mathematics and its Applications, 8, North-Holland, Amsterdam, 1981 | MR | Zbl
[8] I. Gómez, J. Rossi, “Tug-of-war games and the infinity Laplacian with spatial dependence”, Commun. Pure Appl. Anal., 12:5 (2013), 1959–1983 | DOI | MR
[9] A.V. Goncharova, T.V. Sazhenkova, “Application of penalty functions in solutions of extremal problems with constraints”, MAK: ‘Mathematicians contribute to Altai Region’, Proceedings of All-Russian mathematical conference, Altai State University Publishing House, Barnaul, 2016, 33–35 (in Russian)
[10] J.D. Griffin, T.G. Kolda, “Nonlinearly constrained optimization using heuristic penalty methods and asynchronous parallel generating set search”, Appl. Math. Res. eXpress. AMRX, 2010:1 (2010), 36–62 | MR | Zbl
[11] Nauka, Novosibirsk, 1981 | MR | Zbl
[12] A.A. Kaplan, “Convex programming algorithms using smoothing of exact penalty functions”, Siberian Math. J., 23:4 (1982), 491–500 | DOI | MR
[13] A. Kaplan, R. Tichatschke, “Some results about proximal-like methods”, Recent Advances in Optimization, Lecture Notes in Economics and Mathematical Systems, 563, ed. A. Seeger, Springer-Verlag, Berlin–Heidelberg–New York, 2006, 61–86 | DOI | MR | Zbl
[14] D. Kinderlerer, G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, Academic Press, New York, 1980 | MR
[15] P. Lindqvist, Notes on the $p$-Laplace Equation, Second edition, University Printing House, Jyväskylä, 2017 | MR
[16] Mir, M., 1972 | MR
[17] J. Manfredi, J. Rossi, S. Somersille, “An obstacle problem for tug-of-war games”, Commun. Pure Appl. Anal., 14:1 (2015), 217–228 | DOI | MR | Zbl
[18] I.P. Natanson, Theory of Functions of a Real Variable, Frederick Ungar Publ. Co, New York, 1961 | MR
[19] Yu.G. Reshetnyak, Stability Theorems in Geometry and Analysis, Mathematics and Its Application, 304, Springer, 1994 | MR
[20] J. Rossi, “Tug-of-war games and PDEs”, Proc. Royal Soc. Edinburgh, A141 (2011), 319–369 | DOI | MR | Zbl
[21] A.N. Sazhenkov, T.V. Sazhenkova, S.P. Pron, “Study of a class of penalty functions”, Collection of articles, Proceedings of the seminar on geometry and mathematical modelling, 2, ed. E.D. Rodionov, Altai State University Publishing House, Barnaul, 2016, 86–88 (in Russian)
[22] T.V. Sazhenkova, A.N. Sazhenkov, E.A. Plotnikova, “Application of one class of penalty functions for solving variational problems”, Izvestiya of Altai State University, 1:99 (2018), 123–126 (in Russian, English summary) | DOI
[23] T. Tao, An Introduction to Measure Theory, Graduate Studies in Mathematics, 126, AMS, Providence, RI, 2011 | DOI | MR | Zbl
[24] R. Temam, A. Miranville, Mathematical Modeling in Continuum Mechanics, Second Edition, Cambridge University Press, Cambridge, 2005 | MR
[25] J.L. Vázquez, Smoothing and Decay Estimates for Nonlinear Diffusion Equations. Equations of Porous Medium Type, Oxford Lecture Series in Mathematics and its Applications, 33, Oxford University Press Inc, New York, 2006 | MR