Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2019_16_a80, author = {T. F. Mukminov and S. V. Khabirov}, title = {Graf of embedded subalgebras of 11-dimensional symmetry algebra for continuous medium}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {121--143}, publisher = {mathdoc}, volume = {16}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a80/} }
TY - JOUR AU - T. F. Mukminov AU - S. V. Khabirov TI - Graf of embedded subalgebras of 11-dimensional symmetry algebra for continuous medium JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2019 SP - 121 EP - 143 VL - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a80/ LA - ru ID - SEMR_2019_16_a80 ER -
%0 Journal Article %A T. F. Mukminov %A S. V. Khabirov %T Graf of embedded subalgebras of 11-dimensional symmetry algebra for continuous medium %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2019 %P 121-143 %V 16 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a80/ %G ru %F SEMR_2019_16_a80
T. F. Mukminov; S. V. Khabirov. Graf of embedded subalgebras of 11-dimensional symmetry algebra for continuous medium. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 121-143. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a80/
[1] Yu.A. Chirkunov, S.V. Khabirov, Elements of symmetry analysis of differential equations ofcontinuum mechanics, NSTU, Novosibirsk, 2012
[2] S.V. Khabirov, “A hierarchy of submodels of differential equations”, Siberian Math. J., 54:6 (2013), 1111–1120 | DOI | MR
[3] P.J. Olver, Applications of Lie groups to differential equations, Springer–Verlag, New-York, 1986 | MR | Zbl
[4] W. Fushchych, R. Popowych, “Symmetry reduction and exact solutions of the Navier–Stokes equations. I, II”, Nonlinear Mathematical Physics, 1:1 (1994), 75–113 | DOI | MR | Zbl
[5] H. Liu, J. Li, L. Liu, “Lie symmetry analysis, optimal system and exact solutions to the fifth–order KdV types equation”, Mathematical Analysis and Application, 368 (2010), 551–558 | DOI | MR | Zbl
[6] X.-R. Hu, Y. Chen, “Two dimensional symmetry reduction of (2+1)-dimensional nonlinear Klien–Gordon equation”, Applied Mathematics and Computation, 215 (2009), 1141–1145 | DOI | MR | Zbl
[7] F. A. Kiraz, “A note on one dimensional system of generalized Boussinesq equation”, Applied Mathematical Sciences, 2 (2008), 1541–1548 | MR | Zbl
[8] E. Hizel, N. C. Turguy, Guldon, “Symmetry analysis of three dimensional independent Scrodinger–Newton equation”, Applied Mathematical Sciences, 2 (2008), 341–351 | MR | Zbl
[9] C. M. Khalique, A. Bisways, “Analysis of nonlinear Klein–Gordon equation using Lie symmetry analysis”, Applied Mathematics Letter, 23 (2010), 1397–1400 | DOI | MR | Zbl
[10] J. Patera, P. Winterwitz, H. Zassenhaus, “Continuous subgroups of the fundamental groups of physics. 1. General method and the Poincare group”, Journal Mathematical Physics, 16 (1975), 1597–1614 | DOI | MR | Zbl
[11] L.V. Ovsyannikov, A.P. Chupakhin, “Regular partially invariant submodels of equations of gas dynamics”, Journal of Applied Mathematics and Mechanics, 60:6 (1996), 969–978 | DOI | MR | Zbl
[12] S.V. Khabirov, “Irregular partially invariant solutions of rank 2 and defect 1 to equations of gas dynamics”, Siberian Math. J., 43:5 (2002), 1168–1181 | DOI | MR | Zbl
[13] S.V. Khabirov, “Definition of the differential invariant submodels and an example of its classification”, Communications in Nonlinear Science and Numerical Simulation, 9 (2004), 473–480 | DOI | MR | Zbl
[14] S.V. Khabirov, “The differential-invariant solutions for the axis-symmetric gas flows”, Ufa Mathematical Journal, 3 (2009), 154–159 | Zbl
[15] S.V. Khabirov, “Partially invariant solutions for a submodel of radial motions of a gas”, Journal of Applied Mechanics and Technical Physics, 48:5 (2007), 26–34 | DOI | MR
[16] E.V. Makarevich, “Gasdynamics equations submodels hierarchy in case of state equation with separated density”, Siberian Electronic Mathematical Reports, 9 (2012), 306–328 | MR | Zbl
[17] L.V. Ovsyannikov, “Hierarchy of invariant submodels of differential equations”, Doklady Akademii Nauk, 361:6 (1998), 740–742 | MR | Zbl
[18] L.V. Ovsyannikov, “The SUBMODELS program. Gas dynamics”, Journal of Applied Mathematics and Mechanics, 58:4 (1994), 30–55 | DOI | MR | Zbl
[19] S.V. Khabirov, Lecture on mechanics, USATU, Ufa, 2012
[20] S.V. Khabirov, Analytical methods in gas dynamics, BSU, Ufa, 2013