Graf of embedded subalgebras of 11-dimensional symmetry algebra for continuous medium
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 121-143.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider 11-dimensional Lie algebra for the models of the continuous medium mechanics. It is required to represent the graph of embedded subalgebras with the help of the optimal system. To this end inner automorphisms are considered. With the help of inner automorphisms important embeddings of subalgebras of smaller dimension into subalgebras of larger dimension are found. The table of rotation subalgebras of the dimensions from 1 to 11 is constructed. This table contains the important embeddings which are not composition of embeddings by means of subalgebras of the intermediate dimensions. The subalgebras no containing simple subalgebra of rotations can be embedded importantly only in subalgebras of dimension no more than two units. The subgraph of embedded subalgebras containing the simple subalgebra of rotations is constructed as the tree. The same construction is made for the subgraph of embedded subalgebras containing one operator of the rotation, operators of extension and time translation.
Keywords: Lie algebra of symmetries, subgraph of embedded subalgebras, inner automorphism of algebra
Mots-clés : optimal system of subalgebras, subalgebra of rotations.
@article{SEMR_2019_16_a80,
     author = {T. F. Mukminov and S. V. Khabirov},
     title = {Graf of embedded subalgebras of 11-dimensional symmetry algebra for continuous medium},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {121--143},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a80/}
}
TY  - JOUR
AU  - T. F. Mukminov
AU  - S. V. Khabirov
TI  - Graf of embedded subalgebras of 11-dimensional symmetry algebra for continuous medium
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 121
EP  - 143
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a80/
LA  - ru
ID  - SEMR_2019_16_a80
ER  - 
%0 Journal Article
%A T. F. Mukminov
%A S. V. Khabirov
%T Graf of embedded subalgebras of 11-dimensional symmetry algebra for continuous medium
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 121-143
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a80/
%G ru
%F SEMR_2019_16_a80
T. F. Mukminov; S. V. Khabirov. Graf of embedded subalgebras of 11-dimensional symmetry algebra for continuous medium. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 121-143. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a80/

[1] Yu.A. Chirkunov, S.V. Khabirov, Elements of symmetry analysis of differential equations ofcontinuum mechanics, NSTU, Novosibirsk, 2012

[2] S.V. Khabirov, “A hierarchy of submodels of differential equations”, Siberian Math. J., 54:6 (2013), 1111–1120 | DOI | MR

[3] P.J. Olver, Applications of Lie groups to differential equations, Springer–Verlag, New-York, 1986 | MR | Zbl

[4] W. Fushchych, R. Popowych, “Symmetry reduction and exact solutions of the Navier–Stokes equations. I, II”, Nonlinear Mathematical Physics, 1:1 (1994), 75–113 | DOI | MR | Zbl

[5] H. Liu, J. Li, L. Liu, “Lie symmetry analysis, optimal system and exact solutions to the fifth–order KdV types equation”, Mathematical Analysis and Application, 368 (2010), 551–558 | DOI | MR | Zbl

[6] X.-R. Hu, Y. Chen, “Two dimensional symmetry reduction of (2+1)-dimensional nonlinear Klien–Gordon equation”, Applied Mathematics and Computation, 215 (2009), 1141–1145 | DOI | MR | Zbl

[7] F. A. Kiraz, “A note on one dimensional system of generalized Boussinesq equation”, Applied Mathematical Sciences, 2 (2008), 1541–1548 | MR | Zbl

[8] E. Hizel, N. C. Turguy, Guldon, “Symmetry analysis of three dimensional independent Scrodinger–Newton equation”, Applied Mathematical Sciences, 2 (2008), 341–351 | MR | Zbl

[9] C. M. Khalique, A. Bisways, “Analysis of nonlinear Klein–Gordon equation using Lie symmetry analysis”, Applied Mathematics Letter, 23 (2010), 1397–1400 | DOI | MR | Zbl

[10] J. Patera, P. Winterwitz, H. Zassenhaus, “Continuous subgroups of the fundamental groups of physics. 1. General method and the Poincare group”, Journal Mathematical Physics, 16 (1975), 1597–1614 | DOI | MR | Zbl

[11] L.V. Ovsyannikov, A.P. Chupakhin, “Regular partially invariant submodels of equations of gas dynamics”, Journal of Applied Mathematics and Mechanics, 60:6 (1996), 969–978 | DOI | MR | Zbl

[12] S.V. Khabirov, “Irregular partially invariant solutions of rank 2 and defect 1 to equations of gas dynamics”, Siberian Math. J., 43:5 (2002), 1168–1181 | DOI | MR | Zbl

[13] S.V. Khabirov, “Definition of the differential invariant submodels and an example of its classification”, Communications in Nonlinear Science and Numerical Simulation, 9 (2004), 473–480 | DOI | MR | Zbl

[14] S.V. Khabirov, “The differential-invariant solutions for the axis-symmetric gas flows”, Ufa Mathematical Journal, 3 (2009), 154–159 | Zbl

[15] S.V. Khabirov, “Partially invariant solutions for a submodel of radial motions of a gas”, Journal of Applied Mechanics and Technical Physics, 48:5 (2007), 26–34 | DOI | MR

[16] E.V. Makarevich, “Gasdynamics equations submodels hierarchy in case of state equation with separated density”, Siberian Electronic Mathematical Reports, 9 (2012), 306–328 | MR | Zbl

[17] L.V. Ovsyannikov, “Hierarchy of invariant submodels of differential equations”, Doklady Akademii Nauk, 361:6 (1998), 740–742 | MR | Zbl

[18] L.V. Ovsyannikov, “The SUBMODELS program. Gas dynamics”, Journal of Applied Mathematics and Mechanics, 58:4 (1994), 30–55 | DOI | MR | Zbl

[19] S.V. Khabirov, Lecture on mechanics, USATU, Ufa, 2012

[20] S.V. Khabirov, Analytical methods in gas dynamics, BSU, Ufa, 2013