Hamiltonian connectivity of diagonal grid graphs
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 2080-2089.

Voir la notice de l'article provenant de la source Math-Net.Ru

A graph $G$ is called Hamiltonian connected graph if for every pair of distinct vertices $u, v \in V(G)$ there exists a hamiltonian $(u,v)$-path in $G$. In this paper we prove Hamiltonian connectivity of the family of infinite two-dimensional diagonal grid induced subgraphs with added horizontal and vertical border edges. A generalization for multidimensional case is given. These results are applied to prove the existence of discrete dynamic systems with arbitrary control functions with some given functioning properties.
Keywords: hamiltonian connectivity, grid graph, discrete dynamic system.
@article{SEMR_2019_16_a79,
     author = {N. V. Prytkov and A. L. Perezhogin},
     title = {Hamiltonian connectivity of diagonal grid graphs},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {2080--2089},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a79/}
}
TY  - JOUR
AU  - N. V. Prytkov
AU  - A. L. Perezhogin
TI  - Hamiltonian connectivity of diagonal grid graphs
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 2080
EP  - 2089
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a79/
LA  - ru
ID  - SEMR_2019_16_a79
ER  - 
%0 Journal Article
%A N. V. Prytkov
%A A. L. Perezhogin
%T Hamiltonian connectivity of diagonal grid graphs
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 2080-2089
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a79/
%G ru
%F SEMR_2019_16_a79
N. V. Prytkov; A. L. Perezhogin. Hamiltonian connectivity of diagonal grid graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 2080-2089. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a79/

[1] T. Akutsu, S. Kuhara, O. Maruyama, S. Miyano, “Identification of genetic networks by strategic gene disruptions and gene overexpressions under a Boolean model”, Theoretical Computer Science, 298:1 (2003), 235–251 | DOI | MR | Zbl

[2] Ts. Ch. D. Batueva, “Discrete dynamical systems with threshold functions at the vertices”, Diskretn. Anal. Issled. Oper., 21:4 (2014), 25–32 (in Russian) | MR | Zbl

[3] I. S. Bykov, “Functioning of discrete dynamic circulant-type system with threshold functions”, Prikl. Diskr. Mat., 2014, no. 4(26), 84–95

[4] Comput. Math. Math. Phys., 44:12 (2004), 2166–2183 | MR | Zbl

[5] J. Appl. Industr. Math., 6:2 (2012), 160–166 | DOI | MR | MR | Zbl

[6] E. D. Grigorenko, A. A. Evdokimov, V. A. Likhoshvai, I. A. Lobareva, “Nepodvizhnye tochki i tsikly avtomatnykh otobrazhenii, modeliruyuschikh funktsionirovanie gennykh setei”, Vestnik TGU. Prilozhenie, 14 (2005), 206–212

[7] R. W. Hung, H. D. Chen, S. C. Zeng, “The Hamiltonicity and Hamiltonian connectivity of some shaped supergrid graphs”, IAENG Int. J. Comput. Sci., 44:4 (2017), 432–444 http://www.iaeng.org/IJCS/issues_v44/issue_4/IJCS_44_4_04.pdf | MR

[8] R. W. Hung, F. Keshavarz-Kohjerdi, C. B. Lin, J. S. Chen, “The Hamiltonian connectivity of alphabet supergrid graphs”, IAENG Int. J. Appl. Math., 49:1 (2019), 69–85 http://www.iaeng.org/IJAM/issues_v49/issue_1/IJAM_49_1_10.pdf | MR

[9] R. W. Hung, C. F. Li, J. S. Chen, Q. S. Su, “The Hamiltonian connectivity of rectangular supergrid graphs”, Discrete Optim., 26 (2017), 41–65 | DOI | MR | Zbl

[10] R. W. Hung, C. C. Yao, S. J. Chan, “The Hamiltonian properties of supergrid graphs”, Theoret. Comput. Sci., 602 (2015), 132–148 | DOI | MR | Zbl

[11] A. V. Komarov, A. A. Evdokimov, V. A. Likhoshvai, “O vosstanovimosti diskretnyh modelej gennyh setej”, Vestnik TGU, 3 (2006), 437–467

[12] A. S. Kornienko, “Structure of functional graphs for circulants with linear Boolean functions at the vertices”, Prikl. Diskr. Mat., 2014, no. 1(23), 84–95

[13] E. O. Kutumova, A. A. Evdokimov, “Reversible states of functioning the regulatory circuits discrete models the gene nets”, Vestnik TGU Upravlenie vychislitel'naya tekhnika i informatika, 14:1 (2011), 85–94

[14] J. Appl. Industr. Math., 8:4 (2014), 568–573 | DOI | MR | MR | Zbl

[15] J. Appl. Industr. Math., 12:4 (2018), 706–715 | DOI | MR | Zbl

[16] N. V. Prytkov, A. L. Perezhogin, “Recovery algorithms for discrete dynamic system with threshold functions”, Tr. SPIIRAN, 49 (2016), 66–79 | DOI