On garlands in $\chi$-uniquely colorable graphs
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1703-1715.

Voir la notice de l'article provenant de la source Math-Net.Ru

A graph $G$ is called $\chi$-uniquely colorable, if all its $\chi$-colorings induce the same partion of the vertex set into one-color components. For $\chi$-uniquely colorable graphs new bound of the number of vertex set partions into $\chi + 1$ cocliques is found.
Keywords: graph, uniquely colorable graph, chromatic uniqueness, chromatic invartiant.
Mots-clés : complete multipartite graph
@article{SEMR_2019_16_a77,
     author = {P. A. Gein},
     title = {On garlands in $\chi$-uniquely colorable graphs},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1703--1715},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a77/}
}
TY  - JOUR
AU  - P. A. Gein
TI  - On garlands in $\chi$-uniquely colorable graphs
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 1703
EP  - 1715
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a77/
LA  - en
ID  - SEMR_2019_16_a77
ER  - 
%0 Journal Article
%A P. A. Gein
%T On garlands in $\chi$-uniquely colorable graphs
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 1703-1715
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a77/
%G en
%F SEMR_2019_16_a77
P. A. Gein. On garlands in $\chi$-uniquely colorable graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1703-1715. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a77/

[1] M. O. Asanov, V. A. Baransky, V. V. Rasin, Discrete mathematics: graphs, algorithhms, matroids, “Lan”, Saint-Petersburg, 2010 (in Russian)

[2] H. Zhao, Chromaticity and adjoint polynomials of graphs, Wöhrmann Print Service, Zutphen, 2005 | MR

[3] F.M. Dong, K.M. Koh, K.L. Teo, Chromatic polynomials and chromaticity of graphs, World Scientific, 2005 | MR | Zbl

[4] K.M. Koh, K. L. Teo, “The search of chromatically unique graphs”, Graphs Combin., 6:3 (1990), 259–285 | DOI | MR | Zbl

[5] V. A. Baranskii, T. A. Koroleva, “Chromatic uniqueness of certain complete tripartite graphs”, Izv. Ural. Gos. Univ. Mat. Mekh., 74:12 (2010), 5–26 | MR | Zbl

[6] T. A. Koroleva, “Chromatic uniquness of some complete tripartite graphs. I”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 13, no. 3, 2007, 65–83 | MR

[7] T. A. Koroleva, “Chromatic uniqueness of some complete tripartite graphs. II”, Izv. Ural. Gos. Univ. Mat. Mekh., 74:12 (2010), 39–56 | MR | Zbl

[8] T.A. Senchonok, “Chromatic uniqueness of elements of height 2 in latticess of complete multipartite graphs”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 17, no. 3, 2011, 271–281

[9] V. A. Baranskii, T. A. Senchonok, “Chromatic uniqueness of elements of height $\leq 3$ in lattices of complete multipartite graphs”, Proceedings of the Steklov Institute of Mathematics, 279, suppl. 1 (2012), S1–S16 | DOI | MR | Zbl

[10] Hui Wen Zou, “The chromatic uniqueness of certain complete $t$-partite graphs”, Discrete Mathematics, 275 (2004), 375–383 | DOI | MR | Zbl

[11] F. M. Dong, K. M. Koh, K. L. Teo, C. H. C. Little, M. D. Hendy, “Sharp bounds for the number of 3-independent partitions and the chromaticity of bipartite graphs”, Journal of Graph Theory, 37:1 (2001), 48–77 | DOI | MR | Zbl

[12] Gein P.A., “About chromatic uniqueness of some complete tripartite graphs”, Siberian Electronic Mathematical Reports, 14 (2017), 1492–1504 | MR