On garlands in $\chi$-uniquely colorable graphs
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1703-1715

Voir la notice de l'article provenant de la source Math-Net.Ru

A graph $G$ is called $\chi$-uniquely colorable, if all its $\chi$-colorings induce the same partion of the vertex set into one-color components. For $\chi$-uniquely colorable graphs new bound of the number of vertex set partions into $\chi + 1$ cocliques is found.
Keywords: graph, uniquely colorable graph, chromatic uniqueness, chromatic invartiant.
Mots-clés : complete multipartite graph
@article{SEMR_2019_16_a77,
     author = {P. A. Gein},
     title = {On garlands in $\chi$-uniquely colorable graphs},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1703--1715},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a77/}
}
TY  - JOUR
AU  - P. A. Gein
TI  - On garlands in $\chi$-uniquely colorable graphs
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 1703
EP  - 1715
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a77/
LA  - en
ID  - SEMR_2019_16_a77
ER  - 
%0 Journal Article
%A P. A. Gein
%T On garlands in $\chi$-uniquely colorable graphs
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 1703-1715
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a77/
%G en
%F SEMR_2019_16_a77
P. A. Gein. On garlands in $\chi$-uniquely colorable graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1703-1715. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a77/