Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2019_16_a77, author = {P. A. Gein}, title = {On garlands in $\chi$-uniquely colorable graphs}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1703--1715}, publisher = {mathdoc}, volume = {16}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a77/} }
P. A. Gein. On garlands in $\chi$-uniquely colorable graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1703-1715. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a77/
[1] M. O. Asanov, V. A. Baransky, V. V. Rasin, Discrete mathematics: graphs, algorithhms, matroids, “Lan”, Saint-Petersburg, 2010 (in Russian)
[2] H. Zhao, Chromaticity and adjoint polynomials of graphs, Wöhrmann Print Service, Zutphen, 2005 | MR
[3] F.M. Dong, K.M. Koh, K.L. Teo, Chromatic polynomials and chromaticity of graphs, World Scientific, 2005 | MR | Zbl
[4] K.M. Koh, K. L. Teo, “The search of chromatically unique graphs”, Graphs Combin., 6:3 (1990), 259–285 | DOI | MR | Zbl
[5] V. A. Baranskii, T. A. Koroleva, “Chromatic uniqueness of certain complete tripartite graphs”, Izv. Ural. Gos. Univ. Mat. Mekh., 74:12 (2010), 5–26 | MR | Zbl
[6] T. A. Koroleva, “Chromatic uniquness of some complete tripartite graphs. I”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 13, no. 3, 2007, 65–83 | MR
[7] T. A. Koroleva, “Chromatic uniqueness of some complete tripartite graphs. II”, Izv. Ural. Gos. Univ. Mat. Mekh., 74:12 (2010), 39–56 | MR | Zbl
[8] T.A. Senchonok, “Chromatic uniqueness of elements of height 2 in latticess of complete multipartite graphs”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 17, no. 3, 2011, 271–281
[9] V. A. Baranskii, T. A. Senchonok, “Chromatic uniqueness of elements of height $\leq 3$ in lattices of complete multipartite graphs”, Proceedings of the Steklov Institute of Mathematics, 279, suppl. 1 (2012), S1–S16 | DOI | MR | Zbl
[10] Hui Wen Zou, “The chromatic uniqueness of certain complete $t$-partite graphs”, Discrete Mathematics, 275 (2004), 375–383 | DOI | MR | Zbl
[11] F. M. Dong, K. M. Koh, K. L. Teo, C. H. C. Little, M. D. Hendy, “Sharp bounds for the number of 3-independent partitions and the chromaticity of bipartite graphs”, Journal of Graph Theory, 37:1 (2001), 48–77 | DOI | MR | Zbl
[12] Gein P.A., “About chromatic uniqueness of some complete tripartite graphs”, Siberian Electronic Mathematical Reports, 14 (2017), 1492–1504 | MR