A concatenation construction for propelinear perfect codes from regular subgroups of $\mathrm{GA}(r,2)$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1689-1702

Voir la notice de l'article provenant de la source Math-Net.Ru

A code $C$ is called propelinear if there is a subgroup of $\mathrm{Aut}(C)$ of order $|C|$ acting transitively on the codewords of $C$. In the paper new propelinear perfect binary codes of any admissible length more than $7$ are obtained by a particular case of the Solov'eva concatenation construction–1981 and the regular subgroups of the general affine group of the vector space over $\mathrm{GF}(2)$.
Keywords: Hamming code, perfect code, concatenation construction, propelinear code, regular subgroup, transitive action.
Mots-clés : Mollard code
@article{SEMR_2019_16_a76,
     author = {I. Yu. Mogilnykh and F. I. Solov'eva},
     title = {A concatenation construction for propelinear perfect codes from regular subgroups of $\mathrm{GA}(r,2)$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1689--1702},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a76/}
}
TY  - JOUR
AU  - I. Yu. Mogilnykh
AU  - F. I. Solov'eva
TI  - A concatenation construction for propelinear perfect codes from regular subgroups of $\mathrm{GA}(r,2)$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 1689
EP  - 1702
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a76/
LA  - en
ID  - SEMR_2019_16_a76
ER  - 
%0 Journal Article
%A I. Yu. Mogilnykh
%A F. I. Solov'eva
%T A concatenation construction for propelinear perfect codes from regular subgroups of $\mathrm{GA}(r,2)$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 1689-1702
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a76/
%G en
%F SEMR_2019_16_a76
I. Yu. Mogilnykh; F. I. Solov'eva. A concatenation construction for propelinear perfect codes from regular subgroups of $\mathrm{GA}(r,2)$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1689-1702. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a76/