A concatenation construction for propelinear perfect codes from regular subgroups of $\mathrm{GA}(r,2)$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1689-1702.

Voir la notice de l'article provenant de la source Math-Net.Ru

A code $C$ is called propelinear if there is a subgroup of $\mathrm{Aut}(C)$ of order $|C|$ acting transitively on the codewords of $C$. In the paper new propelinear perfect binary codes of any admissible length more than $7$ are obtained by a particular case of the Solov'eva concatenation construction–1981 and the regular subgroups of the general affine group of the vector space over $\mathrm{GF}(2)$.
Keywords: Hamming code, perfect code, concatenation construction, propelinear code, regular subgroup, transitive action.
Mots-clés : Mollard code
@article{SEMR_2019_16_a76,
     author = {I. Yu. Mogilnykh and F. I. Solov'eva},
     title = {A concatenation construction for propelinear perfect codes from regular subgroups of $\mathrm{GA}(r,2)$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1689--1702},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a76/}
}
TY  - JOUR
AU  - I. Yu. Mogilnykh
AU  - F. I. Solov'eva
TI  - A concatenation construction for propelinear perfect codes from regular subgroups of $\mathrm{GA}(r,2)$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 1689
EP  - 1702
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a76/
LA  - en
ID  - SEMR_2019_16_a76
ER  - 
%0 Journal Article
%A I. Yu. Mogilnykh
%A F. I. Solov'eva
%T A concatenation construction for propelinear perfect codes from regular subgroups of $\mathrm{GA}(r,2)$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 1689-1702
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a76/
%G en
%F SEMR_2019_16_a76
I. Yu. Mogilnykh; F. I. Solov'eva. A concatenation construction for propelinear perfect codes from regular subgroups of $\mathrm{GA}(r,2)$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1689-1702. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a76/

[1] S. V. Avgustinovich, O. Heden, F. I. Solov'eva, “Perfect codes of full rank with big kernels”, Discrete Analysis and Oper. Research. Ser. 1, 8:4 (2001), 3–8 (in Russian) | MR | Zbl

[2] J. Borges, I. Yu. Mogilnykh, J. Rifà, F. I. Solov'eva, “Structural properties of binary propelinear codes”, Advances in Mathematics of Communication, 6 (2012), 329–346 | DOI | MR | Zbl

[3] J. Borges, I. Yu. Mogilnykh, J. Rifà, F. I. Solov'eva, “On the number of nonequivalent propelinear extended perfect codes”, The Electronic Journal of Combinatorics, 20:2 (2013), 37–50 | MR | Zbl

[4] J. Borges, K. T. Phelps, J. Rifà, “The rank and kernel of extended 1-perfect Z4-linear and additive non-Z4-linear codes”, IEEE Transactions on Information Theory, 49 (2003), 2028–2034 | DOI | MR | Zbl

[5] J. Borges, J. Rifà, “A characterization of 1-perfect additive codes”, IEEE Transactions on Information Theory, 45 (1999), 1688–1697 | DOI | MR | Zbl

[6] G. K. Guskov, I. Yu. Mogilnykh, F. I. Solov'eva, “Ranks of propelinear perfect binary codes”, Siberian Electronic Mathematical Reports, 10 (2013), 443–449 | MR | Zbl

[7] A. R. Hammons Jr, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane, P. Solé, “The Z4-linearity of Kerdock, Preparata, Goethals, and related codes”, IEEE Transactions on Information Theory, 40:2 (1994), 301–319 | DOI | MR | Zbl

[8] P. Hegedus, “Regular subgroups of the Affine group”, Journal of Algebra, 225 (2000), 740–742 | DOI | MR | Zbl

[9] D. S. Krotov, “Z4-linear Hadamard and extended perfect codes”, WCC2001, International Workshop on Coding and Cryptography, Electronic Notes in Discrete Mathematics, 6, 2001, 107–112 | DOI | MR | Zbl

[10] D. S. Krotov, “Z2k-Dual Binary Codes”, IEEE Transactions on Information Theory, 53 (2007), 1532–1537 | DOI | MR | Zbl

[11] D. S. Krotov, V. N. Potapov, “Propelinear 1-perfect codes from quadratic functions”, IEEE Transactions on Information Theory, 60 (2014), 2065–2068 | DOI | MR | Zbl

[12] J. Pujol, J. Rifà, F. I. Solov'eva, “Construction of Z4-Linear Reed-Muller Codes”, IEEE Transactions on Information Theory, 55:1 (2009), 99–104 | DOI | MR | Zbl

[13] F. J. MacWilliams, N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland Publishing Company, 1977 | MR | Zbl

[14] I. Yu. Mogilnykh, “A note on regular subgroups of the automorphism group of the linear Hadamard code”, Siberian Electronic Mathematical Reports, 15 (2018), 1455–1462 | MR | Zbl

[15] I. Yu. Mogilnykh, F. I. Solov'eva, “On separability of the classes of homogeneous and transitive perfect binary codes”, Problems of Information Transmission, 51 (2015), 139–147 | DOI | MR | Zbl

[16] M. Mollard, “A generalized parity function and its use in the construction of perfect codes”, SIAM J. Alg. Discrete Math., 7:1 (1986), 113–115 | DOI | MR | Zbl

[17] P. R. J. Östergård, K. T. Phelps, O. Pottonen, “The perfect binary one-error-correcting codes of length 15: Part II-properties”, IEEE Transactions on Information Theory, 56 (2010), 2571–2582 | DOI | MR | Zbl

[18] K. T. Phelps, “A combinatorial construction of perfect codes”, SIAM J. Alg. Disc. Meth., 4 (1983), 398–403 | DOI | MR | Zbl

[19] K. T. Phelps, J. Rifà, “On binary 1-perfect additive codes: some structural properties”, IEEE Transactions on Information Theory, 48 (2002), 2587–2592 | DOI | MR | Zbl

[20] J. Rifà, J. Pujol, “Translation-invariant propelinear codes”, IEEE Transactions on Information Theory, 43 (1997), 590–598 | DOI | MR | Zbl

[21] V. N. Potapov, “A lower bound for the number of transitive perfect codes”, Journal of Application and Industrial Mathematics, 1:3 (2007), 373–379 | DOI | MR | Zbl

[22] F. I. Solov'eva, “On binary nongroup codes”, Methody Discretnogo Analiza, 37 (1981), 65–75 (in Russian) | Zbl