Elementary formulas for Kirchhoff index of M\"obius ladder and Prism graphs
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1654-1661.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite connected graph on $n$ vertices with Laplacian spectrum $0=\lambda_1\lambda_2\le\ldots\le\lambda_n.$ The Kirchhoff index of $G$ is defined by the formula $$Kf(G)=n\sum\limits_{j=2}^n\frac{1}{\lambda_j}.$$ The aim of this paper is to find an explicit analytical formula for the Kirchhoff index of Möbius ladder graph $M_n=C_{2n}(1,n)$ and Prism graph $Pr_n=C_n\times P_2$. The obtained formulas provide a simple asymptotical behavior of both invariants as $n$ is going to the infinity.
Keywords: Kirchhoff index, Wiener index, Chebyshev polynomial.
Mots-clés : Laplacian matrix, circulant graph
@article{SEMR_2019_16_a75,
     author = {G. A. Baigonakova and A. D. Mednykh},
     title = {Elementary formulas for {Kirchhoff} index of {M\"obius} ladder and {Prism} graphs},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1654--1661},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a75/}
}
TY  - JOUR
AU  - G. A. Baigonakova
AU  - A. D. Mednykh
TI  - Elementary formulas for Kirchhoff index of M\"obius ladder and Prism graphs
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 1654
EP  - 1661
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a75/
LA  - en
ID  - SEMR_2019_16_a75
ER  - 
%0 Journal Article
%A G. A. Baigonakova
%A A. D. Mednykh
%T Elementary formulas for Kirchhoff index of M\"obius ladder and Prism graphs
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 1654-1661
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a75/
%G en
%F SEMR_2019_16_a75
G. A. Baigonakova; A. D. Mednykh. Elementary formulas for Kirchhoff index of M\"obius ladder and Prism graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1654-1661. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a75/

[1] D. Babić, D.J. Klein, I. Lukovits, S. Nikolić, N. Trinajstić, “Resistance-distance matrix: A computational algorithm and its application”, Int. J. Quantum Chem., 90 (2002), 166–176 | DOI

[2] A.T. Balaban, X. Liu, D.J. Klein, D. Babic, T.G. Schmalz, W.A. Seitz, M. Randic, “Graph invariants for fullerenes”, J. Chem. Inf. Comput. Sci., 35 (1995), 396–404 | DOI

[3] D. Bonchev, A.T. Balaban, X. Liu, D.J. Klein, “Molecular cyclicity and centricity of polycyclic graphs. I. Cyclicity based on resistance distances or reciprocal distances”, Int. J. Quantum Chem., 50 (1994), 1–20 | DOI

[4] A. Carmona, A. M. Encinas, M. Mitjana, “Effective resistances for ladder-like chains”, Int. J. Quantum Chem., 114 (2014), 1670–1677 | DOI

[5] Z. Cinkir, “Effective resistances and Kirchhoff index of ladder graphs”, J. Math. Chem., 54:4 (2016), 955–966 | DOI | MR | Zbl

[6] Z. Cinkir, Effective resistances and Kirchhoff index of prism graphs, 11 Apr. 2017, arXiv: 1704.03429v1 [math.CO] | MR

[7] D.M. Cvetković, M. Doob, H. Sachs, Spectra of Graphs: Theory and Applications, Pure and Applied Mathematics, 87, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York–London, 1980, 368 pp. | MR

[8] P.W. Fowler, “Resistance distances in fullerene graphs”, Croat. Chem. Acta, 75 (2002), 401–408

[9] I. Gutman, B. Mohar, “The Quasi-Wiener and the Kirchhoff indices coincide”, J. Chem. Inf. Comput. Sci., 36 (1996), 982–985 | DOI

[10] D.J. Klein, “Resistance-distance sum rules”, Croat. Chem. Acta, 75 (2002), 633–649

[11] D.J. Klein, “Graph geometry, graph metrics, and Wiener”, MATCH (Commun. Math. Comput. Chem.), 35 (1997), 7–27 | MR | Zbl

[12] D.J. Klein, M. Randić, “Resistance distance”, J. Math. Chem., 12 (1993), 81–95 | DOI | MR

[13] M. Knor, R. Škrekovski, A. Tepeh, “Mathematical aspects of Wiener index”, Ars Math. Contemp., 11:2 (2016), 327–352 | DOI | MR | Zbl

[14] Jia-Bao Liu, Jinde Cao, Abdulaziz Alofi, Abdullah AL-Mazrooei, A. Elaiw, “Applications of Laplacian spectra for n-prism networks”, Neurocomputing, 198 (2016), 69–73 | DOI

[15] I. Lukovits, S. Nikolić, N. Trinajstić, “Resistance distance in regular graphs”, Int. J. Quantum Chem., 71 (1999), 217–225 | 3.0.CO;2-C class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[16] I. Lukovits, S. Nikolić, N. Trinajstić, “Note on the resistance distances in the dodecahedron”, Croat. Chem. Acta, 73 (2000), 957–967

[17] B. Mohar, “The Laplacian spectrum of graphs”, Graph theory, combinatorics, and applications, v. 2, eds. Y. Alavi, G. Chartrand, O.R. Oellermann, A.J. Schwenk, Wiley, New York, 1991, 871–898 | MR | Zbl

[18] J.L. Palacios, “Closed-form formulas for Kirchhoff index”, Int. J. Quantum Chem., 81 (2001), 135–140 | 3.0.CO;2-G class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[19] J.L. Palacios, “Foster's formulas via probability and the Kirchhoff index”, Methodol. Comput. Appl. Probab., 6:4 (2004), 381–387 | DOI | MR

[20] B.Y. Sagan, Y.N. Yeh, P. Zhang, “The Wiener polynomial of a graph”, Int. J. Quantum Chem., 60 (1996), 959–969 | 3.0.CO;2-W class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR

[21] W. Xiao, I. Gutman, “Resistance distance and Laplacian spectrum”, Theor. Chem. Acc., 110 (2003), 284–289 | DOI

[22] H. Xu, “The Laplacian spectrum and Kirchhoff Index of product and lexicographic product of graphs”, J. Xiamen Univ. (Nat. Sci.), 42 (2003), 552–554 | MR | Zbl

[23] Y. Yang, H. Zhang, “Kirchhoff index of linear hexagonal chains”, Int. J. Quantum Chem., 108 (2008), 503–512 | DOI

[24] H. Wiener, “Structural determination of paraffin boiling points”, J. Amer. Chem. Soc., 1:69 (1947), 17–20 | DOI

[25] H. Zhang, Y. Yang, “Resistance distance and Kirchhoff index in circulant graphs”, Int. J. Quantum Chem., 107 (2007), 330–339 | DOI

[26] H. Zhang, Y. Yang, C. Li, “Kirchhoff index of composite graphs”, Discrete Appl. Math., 157:13 (2009), 2918–2927 | DOI | MR | Zbl