Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2019_16_a75, author = {G. A. Baigonakova and A. D. Mednykh}, title = {Elementary formulas for {Kirchhoff} index of {M\"obius} ladder and {Prism} graphs}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1654--1661}, publisher = {mathdoc}, volume = {16}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a75/} }
TY - JOUR AU - G. A. Baigonakova AU - A. D. Mednykh TI - Elementary formulas for Kirchhoff index of M\"obius ladder and Prism graphs JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2019 SP - 1654 EP - 1661 VL - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a75/ LA - en ID - SEMR_2019_16_a75 ER -
%0 Journal Article %A G. A. Baigonakova %A A. D. Mednykh %T Elementary formulas for Kirchhoff index of M\"obius ladder and Prism graphs %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2019 %P 1654-1661 %V 16 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a75/ %G en %F SEMR_2019_16_a75
G. A. Baigonakova; A. D. Mednykh. Elementary formulas for Kirchhoff index of M\"obius ladder and Prism graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1654-1661. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a75/
[1] D. Babić, D.J. Klein, I. Lukovits, S. Nikolić, N. Trinajstić, “Resistance-distance matrix: A computational algorithm and its application”, Int. J. Quantum Chem., 90 (2002), 166–176 | DOI
[2] A.T. Balaban, X. Liu, D.J. Klein, D. Babic, T.G. Schmalz, W.A. Seitz, M. Randic, “Graph invariants for fullerenes”, J. Chem. Inf. Comput. Sci., 35 (1995), 396–404 | DOI
[3] D. Bonchev, A.T. Balaban, X. Liu, D.J. Klein, “Molecular cyclicity and centricity of polycyclic graphs. I. Cyclicity based on resistance distances or reciprocal distances”, Int. J. Quantum Chem., 50 (1994), 1–20 | DOI
[4] A. Carmona, A. M. Encinas, M. Mitjana, “Effective resistances for ladder-like chains”, Int. J. Quantum Chem., 114 (2014), 1670–1677 | DOI
[5] Z. Cinkir, “Effective resistances and Kirchhoff index of ladder graphs”, J. Math. Chem., 54:4 (2016), 955–966 | DOI | MR | Zbl
[6] Z. Cinkir, Effective resistances and Kirchhoff index of prism graphs, 11 Apr. 2017, arXiv: 1704.03429v1 [math.CO] | MR
[7] D.M. Cvetković, M. Doob, H. Sachs, Spectra of Graphs: Theory and Applications, Pure and Applied Mathematics, 87, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York–London, 1980, 368 pp. | MR
[8] P.W. Fowler, “Resistance distances in fullerene graphs”, Croat. Chem. Acta, 75 (2002), 401–408
[9] I. Gutman, B. Mohar, “The Quasi-Wiener and the Kirchhoff indices coincide”, J. Chem. Inf. Comput. Sci., 36 (1996), 982–985 | DOI
[10] D.J. Klein, “Resistance-distance sum rules”, Croat. Chem. Acta, 75 (2002), 633–649
[11] D.J. Klein, “Graph geometry, graph metrics, and Wiener”, MATCH (Commun. Math. Comput. Chem.), 35 (1997), 7–27 | MR | Zbl
[12] D.J. Klein, M. Randić, “Resistance distance”, J. Math. Chem., 12 (1993), 81–95 | DOI | MR
[13] M. Knor, R. Škrekovski, A. Tepeh, “Mathematical aspects of Wiener index”, Ars Math. Contemp., 11:2 (2016), 327–352 | DOI | MR | Zbl
[14] Jia-Bao Liu, Jinde Cao, Abdulaziz Alofi, Abdullah AL-Mazrooei, A. Elaiw, “Applications of Laplacian spectra for n-prism networks”, Neurocomputing, 198 (2016), 69–73 | DOI
[15] I. Lukovits, S. Nikolić, N. Trinajstić, “Resistance distance in regular graphs”, Int. J. Quantum Chem., 71 (1999), 217–225 | 3.0.CO;2-C class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[16] I. Lukovits, S. Nikolić, N. Trinajstić, “Note on the resistance distances in the dodecahedron”, Croat. Chem. Acta, 73 (2000), 957–967
[17] B. Mohar, “The Laplacian spectrum of graphs”, Graph theory, combinatorics, and applications, v. 2, eds. Y. Alavi, G. Chartrand, O.R. Oellermann, A.J. Schwenk, Wiley, New York, 1991, 871–898 | MR | Zbl
[18] J.L. Palacios, “Closed-form formulas for Kirchhoff index”, Int. J. Quantum Chem., 81 (2001), 135–140 | 3.0.CO;2-G class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[19] J.L. Palacios, “Foster's formulas via probability and the Kirchhoff index”, Methodol. Comput. Appl. Probab., 6:4 (2004), 381–387 | DOI | MR
[20] B.Y. Sagan, Y.N. Yeh, P. Zhang, “The Wiener polynomial of a graph”, Int. J. Quantum Chem., 60 (1996), 959–969 | 3.0.CO;2-W class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR
[21] W. Xiao, I. Gutman, “Resistance distance and Laplacian spectrum”, Theor. Chem. Acc., 110 (2003), 284–289 | DOI
[22] H. Xu, “The Laplacian spectrum and Kirchhoff Index of product and lexicographic product of graphs”, J. Xiamen Univ. (Nat. Sci.), 42 (2003), 552–554 | MR | Zbl
[23] Y. Yang, H. Zhang, “Kirchhoff index of linear hexagonal chains”, Int. J. Quantum Chem., 108 (2008), 503–512 | DOI
[24] H. Wiener, “Structural determination of paraffin boiling points”, J. Amer. Chem. Soc., 1:69 (1947), 17–20 | DOI
[25] H. Zhang, Y. Yang, “Resistance distance and Kirchhoff index in circulant graphs”, Int. J. Quantum Chem., 107 (2007), 330–339 | DOI
[26] H. Zhang, Y. Yang, C. Li, “Kirchhoff index of composite graphs”, Discrete Appl. Math., 157:13 (2009), 2918–2927 | DOI | MR | Zbl